Skip to main content

Advertisement

Log in

A review of jet grouting practice and development

  • Review
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The jet grouting technique was originally initiated in the UK and progressively developed following the needs for larger geometries, ease of implementation, economic rationality, and better mechanical properties. This paper presents a comprehensive review of the development and practice of jet grouting through some fundamental concepts and relevant case studies. Subsequently, a laboratory testing program is performed to investigate the factors affecting the efficacy of the twin grouting system. The principal objective of this study is to define the suitable conditions for the jet grouting efficacy regarding economic rationality as well as quality control. For the first phase, a particular emphasis is placed on the properties of jet columns, site geological conditions, implementation methods, and the justification of each selected treatment option, while the second phase mainly focuses on the unconfined compressive strength (UCS) tests. It follows that the mono-fluid jet grouting system presents a valuable flexibility in dealing with complex configurations; yet, the double- and triple-fluid systems are more indicated for cases of mass treatments for which large portions of space must be treated and overlapping is fundamentally important for the reliability of the treatment. Furthermore, it was established that the efficacy of the twin-jet method primarily relies on the proper adequacy of some critical parameters, namely, the cement content, the water-cement ratio, and cement slurry-water glass ratio. In spite of some uncertainties inherently related to the technique, the UCS test represents the quintessential laboratory index for evaluating the mechanical properties of grouted elements, deriving jet grouting efficacy and the economics of jet grouts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  • Abramovich GN (1963) General properties of turbulent jets. In: Schindel L (ed) The theory of turbulent jets. MIT Press, Cambridge, pp 3–49

    Google Scholar 

  • Arroyo M, Gens A, Croce P, Modoni G (2012) Design of jet-grouting for tunnel waterproofing. 7th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground; 16–18 May 2011, Rome, Italy. https://doi.org/10.13140/2.1.3005.6328

  • Arson C, Juge B (2012) A hollow sphere model to dimension soilcrete columns. GeoCongress 2012. ASCE, Oakland, CA

    Google Scholar 

  • Atangana NPG, Shen JS, Modoni G, Arulrajah A (2018) Recent advances in horizontal jet grouting (HJG): an overview. Arab J Sci Eng 43(4):1543–1560. https://doi.org/10.1007/s13369-017-2752-3

    Article  Google Scholar 

  • Basu A, Aydin A (2006) Predicting uniaxial compressive strength by point load test: significance of cone penetration. Rock Mech Rock Eng 39(5):483–490

    Article  Google Scholar 

  • Bienfait P, Hingant P, Mariotti G, Guilloux A, Lemaout JN (1996) The geological accident of the Hurtières tunnel on A43. International workshop of the AFTES (French Association of Underground Works), Chambéry, October 1996, pp 353–363

  • Brill G, Burke G, Ringen A (2003) A ten-year perspective of jet grouting: advancements in applications and technology. Third International Conference on Grouting and Ground Treatment, pp 218-235. https://doi.org/10.1061/40663(2003)101

  • Bui HH, Sako K, Fukagawa R (2007) Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (SPH) method. J Terrramech 44:339–346

    Article  Google Scholar 

  • Burke GK (2004) Jet grouting systems: advantages and disadvantages. In: GeoSupport 2004: Drilled shafts, micropiling, deep mixing, remedial methods, and specialty foundation systems, Orlando, pp 875–886

  • Burke GK, Cacoilo DM, Chadwick KR (2000) Super-jet grouting: a new technology for in situ soil improvement. Proceedings of TRB 2000, Washington D.C.

  • Celma JJ, Carrión MA (2003) Design and control parameters for jet grouting. XIII European Conference Soil mechanics and Geotechnical Engineering, Prague, Czech Republic

  • Chai JC, Shen SL, Zhu HH, Zhang XL (2004) Land subsidence due to groundwater drawdown in Shanghai. Géotechnique 54(3):143–148. https://doi.org/10.1680/geot.2004.54.2.143

    Article  Google Scholar 

  • Chai JC, Miura N, Koga H (2005) Lateral displacement of ground caused by soil–cement column installation. J Geotech Geoenviron Eng 131(5):623–632

    Article  Google Scholar 

  • Chai JC, Carter JP, Miura N, Zhu HH (2009) Improved prediction of lateral deformations due to installation of soil–cement columns. J Geotech Geoenviron Eng 135(12):1836–1845

    Article  Google Scholar 

  • Chai JC, Shen JS, Liu MD, Yuan DJ (2018) Predicting performance of embankments on PVD improved subsoils. Comput Geotech 93(2018):222–231

    Article  Google Scholar 

  • Cheng WC, Ni JC, Shen SL, Huang HW (2017a) Investigation into factors affecting jacking force: a case study. Proc Inst Civ Eng Geotech Eng 170(4):322–334

    Article  Google Scholar 

  • Cheng WC, Ni JC, Shen SL (2017b) Experimental and analytical modeling of shield segment under cyclic loading. Int J Geomech ASCE 17(6):04016146(1–18). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000810

    Article  Google Scholar 

  • Cherkassky V, Ma Y (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 17:113–126

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  • Cortez P, Embrechts M (2013) Using sensitivity analysis and visualization techniques to open black box data mining models. Inf Sci 225:1–17

    Article  Google Scholar 

  • Coulter S, Martin CD (2006) Single fluid jet grout strength and deformation properties. Tunn Undergr Space Technol 21(2006):690–695

    Article  Google Scholar 

  • Covil C, Skinner A (1994) Jet grouting—a review of some of the operating parameters that form the basis of the jet grouting process. Grouting in the ground, proceeding of conference institution of civil engineering, Thomas Telford, London, pp 605–629

    Chapter  Google Scholar 

  • Croce P, Flora A (1998) Jet-grouting effects on pyroclastic soil. Rivisita Italiana di Geotecnica 2/98, pp 5–14

  • Croce P, Flora A (2000) Analysis of single-fluid jet grouting. Géotechnique 50(6):739–748. https://doi.org/10.1680/geot.2000.50.6.739

    Article  Google Scholar 

  • Croce P, Modoni G, Russo, G (2004) Jet-grouting performance in tunnelling. In: GeoSupport 2004. Drilled shafts, micropiling, deep mixing, remedial methods, and specialty foundation systems, pp 910–922. https://doi.org/10.1061/40713(2004)78

  • Croce P, Flora A, Modoni G (2014a) Technology. In: Jet grouting: technology, design and control. Taylor & Francis Group, Boca Raton, pp 9–25

    Chapter  Google Scholar 

  • Croce P, Flora A, Modoni G (2014b) Jet-grouted structures. In: Jet grouting: technology, design and control. Taylor & Francis Group, Boca Raton, pp 97–121

    Chapter  Google Scholar 

  • Dhouib A, Magnan JP, Guilloux A (2004) Soil improvement techniques: history, geotechnical investigations, applications and economic data. ASEP-GI 2004 -Vol. 2 Magnan (ed.). Presses de l’ENPC/LCPC, Paris, pp 557–595

    Google Scholar 

  • Du YJ, Jiang NJ, Shen SL, Jin F (2012) Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay. J Hazard Mater 225-226:195–201

    Article  Google Scholar 

  • Du YJ, Jiang NJ, Liu SY, Jin F, Singh DN, Pulppara A (2014a) Engineering properties and microstructural characteristics of cement solidified zinc-contaminated kaolin clay. Can Geotech J 51:289–302

    Article  Google Scholar 

  • Du YJ, Wei ML, Reddy KR, Liu ZP, Jin F (2014b) Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil. J Hazard Mater 271:131–140

    Article  Google Scholar 

  • Durgunoglu HT, Kulac HF, Oruc K, et al (2003) A case history of ground treatment with jet grouting against liquefaction, for a cigarette factory in Turkey. In: LF Johnsen, DA Bruce, MJ Byle (eds) Third International Conference on Grouting and Ground Treatment, New Orleans, Louisiana, United States, 10–12 Feb 2003, pp 442–463. American Society of Civil Engineers

  • Eramo N, Modoni G, Arroyo M (2012) Design control and monitoring of a jet grouted excavation bottom plug. Proc. of the 7th Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, TC28 IS Rome, Viggiani ed., Taylor & Francis Group London, pp 611–618, 16–18 May 2011, ISBN 978–0–415-66367-8

    Chapter  Google Scholar 

  • Eskisar T (2015) Influence of cement treatment on unconfined compressive strength and compressibility of lean clay with medium plasticity. Arab J Sci Eng 40(3):763–772. https://doi.org/10.1007/s13369-015-1579-z

    Article  Google Scholar 

  • Essler R, Yoshida H (2004) Jet grouting. Ground improvement, 2nd edn. Taylor and Francis, New York, pp 160–196

    Google Scholar 

  • Evangelista S, Giovinco G, Wanik L (2015) Single vs multi parameter calibration for the numerical simulation of submerged flows in jet grouting applications. Int J Mech 9:252–259

    Google Scholar 

  • Flora A, Modoni G, Lirer S, Croce P (2013) The diameter of single, double and triple fluid jet grouting columns: prediction method and field trial results. Géotechnique 63(11):934–945. https://doi.org/10.1680/geot.12.P.062

    Article  Google Scholar 

  • Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  Google Scholar 

  • Gladkov IL, Malinin AG, Zhemchugov AA (2011) Strength and deformation characteristics of soil-concrete as a function of jet-grouting parameters. In: Geotechnical Engineering: New Horizons Proceedings of the 21st European Young Geotechnical Engineers’ Conference Rotterdam, pp 75–78

  • Guatteri G, Kauschinger JL, Doria AC, Perry EB (1988) Advances in the construction and design of jet grouting methods in South America. International Conference on Case Histories in Geotechnical Engineering. Paper3. http://scholarsmine.mst.edu/icchge/2icchge/icchge-session5/3

  • Haykin S (1998) Neural networks: a comprehensive foundation. US, Prentice Hall 842 pages

    Google Scholar 

  • Ho CE (2007) Fluid-soil interaction model for jet grouting. In: Grouting for ground improvement: innovative concepts and applications, Denve, pp 1-10

  • Institute of Geotechnical Engineering, Nanjing Institute of Water Conservancy (2003) Geotechnical engineering technical manual [M]. People’s Communications Press, Beijing

    Google Scholar 

  • Jiang MJ, Konrad JM, Leroueil S (2003) An efficient technique for generating homogeneous specimens for DEM studies. Comput Geotech 30(5):579–597

    Article  Google Scholar 

  • Jiang MJ, Leroueil S, Konrad JM (2004) Insight into strength functions of unsaturated granulates by DEM analysis. Comput Geotech 31(6):473–489

    Article  Google Scholar 

  • Jiang MJ, Yan HB, Zhu HH, Utili S (2011) Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses. Comput Geotech 2011(38):14–29

    Article  Google Scholar 

  • Jin YF, Yin ZY, Wu ZX, Zhou WH (2018a) Identifying parameters of easily crushable sand and application to offshore pile driving. Ocean Eng 154:416–429

    Article  Google Scholar 

  • Jin YF, Yin ZY, Wu ZX, Daouadji A (2018b) Numerical modeling of pile penetration in silica sands considering the effect of grain breakage. Finite Elem Anal Des 144(2018):15–29

    Article  Google Scholar 

  • Jin YF, Wu ZX, Yin ZY, Shen JS (2017) Estimation of critical state-related formula in advanced constitutive modeling of granular material. Acta Geotech 12:1329–1351. https://doi.org/10.1007/s11440-017-0586-5

    Article  Google Scholar 

  • Leoni FM, Pianezze G (2017) Elliptical jet grouting: an innovative, viable, and effective solution: the example of the bottom plugs for the SELA Projects in New Orleans, LA. In: Gazzarrini P, Richards TD Jr, Bruce DA, Byle MJ, El Mohtar CS, Johnsen LF (eds) Grouting 2017: jet grouting, diaphragm walls, and deep mixing. ASCE, Honolulu, pp 11–20

    Chapter  Google Scholar 

  • Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76. https://doi.org/10.1007/s11831-010-9040-7

    Article  Google Scholar 

  • Liu H, Zhou H, Kong G, Qin H, Zha Y (2017) High pressure jet-grouting column installation effect in soft soil: theoretical model and field application. Comput Geotech 88:74–94

    Article  Google Scholar 

  • Liu XX, Shen SL, Xu YS, Yin ZY (2018) Analytical approach for time-dependent groundwater inflow into shield tunnel face in confined aquifer. International Journal for Numerical and Analytical Methods in Geomechanics 42(4):655–673

    Article  Google Scholar 

  • Lucy L (1977) A numerical approach to the fission hypothesis. Astron J 82:1013

    Article  Google Scholar 

  • Lunardi P (1997) Ground improvement by means of jet grouting. Ground Improvement 1:65–85

    Article  Google Scholar 

  • Lyu HM, Sun WJ, Shen SL, Arulrajah A (2018a) Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Sci Total Environ 626:1012–1025. https://doi.org/10.1016/j.scitotenv.2018.01.138

    Article  Google Scholar 

  • Lyu HM, Shen, JS, Arulrajah A (2018b) Assessment of Geohazards and Preventative Countermeasures Using AHP Incorporated with GIS in Lanzhou, China. Sustainability 10(2):304. https://doi.org/10.3390/su10020304

    Article  Google Scholar 

  • Lyu HM, Wu YX, Shen JS, Zhou AN (2018c) Assessment of social-economic risk of Chinese dual land use system using fuzzy AHP. Sustainability 10(7):2451. https://doi.org/10.3390/su10072451

    Article  Google Scholar 

  • Ma L, Xu YS, Shen SL, Sun WJ (2014) Evaluation of the hydraulic conductivity of aquifer with piles. Hydrogeol J 22(2):371–382. https://doi.org/10.1007/s10040-013-1068-y

    Article  Google Scholar 

  • Martin II JR and Olgun CG (2006) Liquefaction mitigation using jet grout columns—1999 Kocaeli earthquake case history. Ground Modification and Seismic Mitigation (GSP 152). pp 349–358. American Society of Civil Engineers (2003)

  • Miki G (1973) Chemical stabilization of Sandy soils by grouting in Japan. 8th International Conference on Soil Mechanics and Foundation Engineering, pp 395

  • Modoni G, Bzòwka J (2012) Analysis of foundation reinforced with jet grouting. J Geotech Geoenviron Eng 138(12):1442–1454. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000718

    Article  Google Scholar 

  • Modoni G, Croce P, Mongiovi L (2006) Theoretical modelling of jet grouting. Géotechnique 56(5):335–347

    Article  Google Scholar 

  • Modoni G, Bzówka J, Pieczyrak J (2010) Experimental investigation and numerical modelling on the axial loading of jet grouting columns. Architecture Civil Engineering Environment, the Silesian University of Technology, No. 3/2010, pp 69–78

  • Modoni G, Wanik L, Giovinco G, Bzówka J, Leopardi A (2014) Numerical analysis of submerged flows for jet grouting. Ground Improvement, Vol 169, Issue GI1, Institution of Civil Engineering, pp 42–52

  • Morey J, Bachy (1992) Jet grouting in construction. Revue Francaise de Geotechnique 61:17–30

    Article  Google Scholar 

  • Morey J, Campo DW (1999) Quality control of jet grouting on the Cairo metro. Ground 559(Improvement 3):67–75

    Article  Google Scholar 

  • Mosiici P (1994) Jet grouting quality control. Grouting in the ground, Proceedings of the ICE, Thomas Telford, London, pp 227–235

    Chapter  Google Scholar 

  • Namikaya T, Koseki J (2007) Evaluation of tensile strength of cement-treated sand based on several types of laboratory tests. Soils Found 47(4):657–674 Japanese Geotechnical Society

    Article  Google Scholar 

  • Ni JC, Cheng WC (2014) Quality control of double fluid jet grouting below groundwater table: case history. Soils Found 54(6):1039–1053

    Article  Google Scholar 

  • Ochmański M, Modoni G, Bzówka J (2015a) Prediction of the diameter of jet grouting columns with artificial neural networks. Soils Found 55(2):425–436. https://doi.org/10.1016/j.sandf.2015.02.016

    Article  Google Scholar 

  • Ochmański M, Modoni G, Bzówka J (2015b) Numerical analysis of tunnelling with jet-grouted canopy. Soils Found 55(5):929–942. https://doi.org/10.1016/j.sandf.2015.08.002

    Article  Google Scholar 

  • Ribeiro D, Cardoso R (2017) A review on models for the prediction of the diameter of jet grouting columns. Eur J Environ Civ Eng 21(6):1–29. https://doi.org/10.1080/19648189.2016.1144538

    Article  Google Scholar 

  • Russo G, Modoni G (2005) Monitoring results of a tunnel excavation in urban area. 5th Intern. Symposium of the Technical Committee TC28, Geotechnical Aspects of Underground Construction in Soft Ground, June 15–17, Amsterdam, Balkema (ISBN 978–0415391245), pp 751–756

  • Shen SL, Xu YS (2011) Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can Geotech J 48(9):1378–1392. https://doi.org/10.1139/T11-049

    Article  Google Scholar 

  • Shen SL, Luo CY, Bai Y, Kim YH, Peng SJ (2009a) Instant solidification of soft ground horizontally using jet grouting. Contemporary Topics in Ground Modification, Problem Soils, and Geo-Support. Geotechnical Special Publication No. 187, American Society of Civil Engineers, Reston, pp 257–264

  • Shen SL, Luo CY, Xiao XC, Wang JL (2009b) Improvement efficacy of RJP method in Shanghai soft deposit. In: Han J, Zheng G, Schaefer VR, Huang M (eds) Advances in Ground Improvement (GSP 188). ASCE Press, Reston, pp 170–177

    Chapter  Google Scholar 

  • Shen SL, Xu YS, Han J, Zhang JM (2012a) State of the practice of grouting and deep mixing in China—a recent ten-year review. In: Johnsen LF, Bruce DA, Byle MJ (eds) Grouting and Deep Mixing 2012, Geotechnical Special Publication No. 228, vol 1. ASCE, Reston, VA, pp 343–356 [NSFC410, NSFC-JSPS]

    Chapter  Google Scholar 

  • Shen SL, Wang ZF, Xu YS, Kim YH (2012b) State of practice of jet grouting in Shanghai: from technology development to scientific research. International Symposium on Lowland Technology (ISLT2012), 11 to 13 September 2012, Bali, Indonesia 18

  • Shen SL, Wang ZF, Xu YS, Bai Y, Peng SJ (2012c) An innovative technology of horizontal jet-grouting with less impact on surroundings. International Symposium on Advances in Ground Technology and Geo-Information (IS-AGTG), pp 207–214.1–2 Dec 2011, Singapore

  • Shen SL, Wang ZF, Sun WJ, Wang LB, Horpibulsuk S (2013a) A field trial of horizontal jet grouting using the composite-pipe method in the soft deposit of Shanghai. Tunn Undergr Space Technol 35(2013):142–151. https://doi.org/10.1016/j.tust.2013.01.003

    Article  Google Scholar 

  • Shen SL, Wang ZF, Yang J, Ho EC (2013b) Generalized approach for prediction of jet grout column diameter. J Geotech Geoenviron 139(12):2060–2069. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000932

    Article  Google Scholar 

  • Shen SL, Wang ZF, Horpibulsuk S, Kim YH (2013c) Jet-grouting with a newly developed technology: the twin-jet method. Eng Geol 152(1):87–95

    Article  Google Scholar 

  • Shen SL, Ma L, Xu YS, Yin ZY (2013d) Interpretation of increased deformation rate in aquifer IV due to groundwater pumping in Shanghai. Can Geotech J 50(11):1129–1142

    Article  Google Scholar 

  • Shen SL, Wu HN, Cui YJ, Yin ZY (2014a) Long-term settlement behavior of the metro tunnel in Shanghai. Tunn Undergr Space Technol 40(2014):309–323. https://doi.org/10.1016/j.tust.2013.10.013

    Article  Google Scholar 

  • Shen SL, Wang ZF, Ho CE (2014b) Current state of the art in jet grouting for stabilizing soft soil. Ground improvement and geosynthetics, GPS 238 ASCE, pp 107–116

  • Shen SL, Wang JP, Wu HN, Xu YS, Ye GL, Yin ZY (2015a) Evaluation of hydraulic conductivity for both marine and deltaic deposit based on piezocone test. Ocean Eng 110(2015):174–182. https://doi.org/10.1016/j.oceaneng.2015.10.011

    Article  Google Scholar 

  • Shen SL, Wu YX, Xu YS, Hino T, Wu HN (2015b) Evaluation of hydraulic parameter based on groundwater pumping test of multi-aquifer system of Tianjin. Comput Geotech 68(2015):196–207

    Article  Google Scholar 

  • Shen SL, Cui QL, Ho EC, Xu YS (2016) Ground response to multiple parallel microtunneling operations in cemented silty clay and sand. J Geotech Geoenviron Eng 142(5):04016001(1–11)

    Article  Google Scholar 

  • Shen SL, Wang ZF, Cheng WC (2017a) Estimation of lateral displacement induced by jet grouting in clayey soils. Geotechnique, ICE 167(7):621–630

    Article  Google Scholar 

  • Shen SL, Wu YX, Misra A (2017b) Calculation of head difference at two sides of a cut-off barrier during excavation dewatering. Comput Geotech 91:192–202

    Article  Google Scholar 

  • Shibazaki M (1996) State of the art of grouting in Japan. Proc. IS-Tokyo’96, the 2nd Int. Conf. of Ground Improvement and Geosys-tems, Japanese Geotechnical Society, Tokyo, pp 851–867

  • Shibazaki M (2003) State of practice of jet grouting. Grouting and Ground Treatment, New Orleans, pp 198–217

    Google Scholar 

  • Shinsaka T, Yamazaki J, Nakanishi Y, Komiya K (2017) Development of the multifan-shaped jet grouting method of ground improvement. In: Gazzarrini P, Richards TD Jr, Bruce DA, Byle MJ, El Mohtar CS, Johnsen LF (eds) Grouting 2017: jet grouting, diaphragm walls, and deep mixing. ASCE, Honolulu, pp 1–10

    Google Scholar 

  • Tan Y, Lu Y (2017a) Forensic diagnosis of a leaking accident during excavation. J Perform Constr Facil, ASCE 31(5):04017061

    Article  Google Scholar 

  • Tan Y, Lu Y (2017b) Why excavation of a small air shaft caused excessively large displacements: forensic investigation. J Perform Constr Facil, ASCE 31(2):04016083

    Article  Google Scholar 

  • Tan Y, Huang R, Kang Z, Wei B (2016) Covered semi-top-down excavation of subway station surrounded by closely spaced buildings in downtown Shanghai: building response. J Perform Constr Facil, ASCE 30(6):04016040

    Article  Google Scholar 

  • Tan Y, Zhu H, Peng F, Karlsrud K, Wei B (2017) Characterization of semi-top-down excavation for subway station in Shanghai soft ground. Tunn Undergr Space Technol 68:244–261

    Article  Google Scholar 

  • Tinoco J, Correia GA, Cortez P (2011) Application of data mining techniques in the estimation of the uniaxial compressive strength of jet grouting columns over time. Constr Build Mater 25:1257–1262

    Article  Google Scholar 

  • Tinoco J, Correia AG, Cortez P (2014) Support vector machines applied to uniaxial compressive strength prediction of jet grouting columns. Comput Geotech 55:132–140

    Article  Google Scholar 

  • Tinoco J, Correia AG, Cortez P (2016) Jet grouting column diameter prediction based on a data-driven approach. Eur J Environ Civil Eng 1–21

  • Toraldo C, Modoni G, Ochmański M, Croce P (2017) The characteristic strength of jet-grouted material. Geotechnique 68:262–279. https://doi.org/10.1680/jgeot.16.P.320

    Article  Google Scholar 

  • Tornaghi R, Pettinaroli A (2004) Design and control criteria of jet grouting treatments. Proceedings of ASEP–GI international symposium sur l’amelioration des sols en place. Ecole Nationale des Ponts et Chaussees, Paris, vol 1, pp 1–24

  • Vesic AS (1972) Expansion of cavities in infinite soil mass. J Soil Mech Found Eng 98(3):265–290

    Google Scholar 

  • Wang ZF, Shen SL, Yang J (2012) Estimation of the diameter of jet-grouted column based on turbulent kinematic flow theory. Grouting and Deep Mixing 2012. Geotechnical Special Publication No. 228, American Society of Civil Engineers, Reston, pp 2044–2051

  • Wang ZF, Shen SL, Ho EC, Kim YH (2013a) Jet grouting practice: an overview. Geotech Eng J SEAGS & AGSSEA 44(4):88–96  

    Google Scholar 

  • Wang ZF, Shen SL, Ho EC, Kim YH (2013b) Investigation of field installation effects of horizontal twin-jet grouting in Shanghai soft soil deposits. Can Geotech J 50(3):288–297. https://doi.org/10.1139/cgj-2012-0199

    Article  Google Scholar 

  • Wang ZF, Shen SL, Ho CE, Xu YS (2014) Jet grouting for mitigation of installation disturbance. Proc Inst Civ Eng Geotech Eng 167(GE6):526–536. https://doi.org/10.1680/geng.13.00103

    Article  Google Scholar 

  • Wang ZF, Shen SL, Yin ZY, Xu YS (2015) Rapid field evaluation of the strength of cement stabilized clayey soil. Bull Eng Geol Environ 74(3):991–999. https://doi.org/10.1007/s10064-014-0643-3

    Article  Google Scholar 

  • Wang ZF, Shen JS, Cheng WC (2018) Simple Method to Predict Ground Displacements Caused by Installing Horizontal Jet-Grouting Columns. Math Probl Eng 2018:1-11, Article ID 1897394. https://doi.org/10.1155/2018/1897394

    Google Scholar 

  • Wanik L, Mascolo MC, Bzόwka J, Modoni G, Shen JSL (2017) Experimental evidence on the strength of soil treated with single and double fluid jet grouting. Proc. of the grouting 2017: grouting, deep mixing, and diaphragm walls, Honolulu, July 9-12, 2017

  • Wu HN, Shen SL, Ma L, Yin ZY, Horpibulsuk S (2015a) Evaluation of the strength increase of marine clay under staged embankment loading: a case study. Mar Georesour Geotechnol 33(6):532–541

    Article  Google Scholar 

  • Wu YX, Shen SL, Xu YS, Yin ZY (2015b) Characteristics of groundwater seepage with cutoff wall in gravel aquifer. I: field observations. Can Geotech J 52(10):1526–1538. https://doi.org/10.1139/cgj-2014-0285

    Article  Google Scholar 

  • Wu YX, Shen SL, Yin ZY, Xu YS (2015c) Characteristics of groundwater seepage with cutoff wall in gravel aquifer. II: numerical analysis. Can Geotech J 52(10):1539–1549. https://doi.org/10.1139/cgj-2014-0289

    Article  Google Scholar 

  • Wu YX, Shen SL, Wu HN, Xu YS, Yin ZY, Sun WJ (2015d) Environmental protection using dewatering technology in a deep confined aquifer beneath a shallow aquifer. Eng Geol 196(2015):59–70. https://doi.org/10.1016/J.ENGGEO.2015.06.015

    Article  Google Scholar 

  • Wu HN, Shen SL, Liao SM, Yin ZY (2015e) Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings. Tunn Undergr Space Technol 50(2015):317–323. https://doi.org/10.1016/J.TUST.2015.08.001

    Article  Google Scholar 

  • Wu YD, Diao HG, Ng CWW, Liu J, Zeng CC (2016a) Investigation of ground heave due to jet grouting in soft clay. J Perform Constr Facil 30(6)

    Article  Google Scholar 

  • Wu YX, Shen SL, Yuan DJ (2016b) Characteristics of dewatering induced drawdown curve under blocking effect of retaining wall in aquifer. J Hydrol 539:554–566. https://doi.org/10.1016/j.jhydrol.2016.05.065

    Article  Google Scholar 

  • Wu YX, Shen JS, Cheng WC, Hino T (2017) Semi-analytical solution to pumping test data with barrier, wellbore storage, and partial penetration effects. Eng Geol 226:44–51. https://doi.org/10.1016/j.enggeo.2017.05.011

    Article  Google Scholar 

  • Wu YX, Lyu HM, Shen JS, Arulrajah A (2018) Geological and hydrogeological environment in Tianjin with potential geohazards and groundwater control during excavation. Environ Earth Sci 77(10):392. https://doi.org/10.1007/s12665-018-7555-7

  • Xanthakos PP, Abramson LW, Bruce DA (1994) Jet grouting. In: Ground Control and improvement. John Wiley & Sons, Inc., pp 580–683

  • Xu YS, Shen SL, Du YJ (2009) Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures. Eng Geol 109(3–4):241–254

    Article  Google Scholar 

  • Xu YS, Ma L, Du YJ, Shen SL (2012a) Analysis on urbanization induced land subsidence in Shanghai. Nat Hazards 63(2):1255–1267. https://doi.org/10.1007/s11069-012-0220-7

    Article  Google Scholar 

  • Xu YS, Ma L, Shen SL, Sun WJ (2012b) Evaluation of land subsidence by considering underground structures penetrated into aquifers in Shanghai. Hydrogeol J 20(8):1623–1634. https://doi.org/10.1007/s10040-012-0892-9

    Article  Google Scholar 

  • Xu YS, Shen SL, Ma L, Sun WJ, Yin ZY (2014) Evaluation of the blocking effect of retaining walls on groundwater seepage in aquifers with different insertion depths. Eng Geol 183:254–264. https://doi.org/10.1016/j.enggeo.2014.08.023

    Article  Google Scholar 

  • Xu YS, Shen SL, Ren DJ, Wu HN (2016) Factor analysis of land subsidence in Shanghai: a view based on strategic environmental assessment. Sustainability 8(2016):573(1-12). https://doi.org/10.3390/su8060573

    Article  Google Scholar 

  • Xu YS, Shen JS, Wu HN, Zhang N (2017) Risk and impacts on the environment of free-phase biogas in Quaternary deposits along the coastal region of Shanghai. Ocean Eng 137:129–137. https://doi.org/10.1016/j.oceaneng.2017.03.051

    Article  Google Scholar 

  • Xu YS, Shen SL, Lai Y, Zhou AN (2018) Design of Sponge City: lessons learnt from an ancient drainage system in Ganzhou, China. J Hydrol 563(2018):900–908. https://doi.org/10.1016/j.jhydrol.2018.06.075

    Article  Google Scholar 

  • Yahiro T, Yoshida H (1973) Induction grouting method utilizing high speed water jet. Proc., VIII Int. Conf. Soil Mechanics and Foundation Engineering, USSR National Society, Moscow, p 402e404

  • Yao YP, Zhou AN (2013) Non-isothermal unified hardening model: a thermo-elastoplastic model for clays. Geotechnique 63:1328–1345

    Article  Google Scholar 

  • Yao YP, Sun DA, Matsuoka H (2008a) A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Comput Geotech 35:210–222

    Article  Google Scholar 

  • Yao YP, Yamamoto H, Wang ND (2008b) Constitutive model considering sand crushing. Soils Found 48:603–608

    Article  Google Scholar 

  • Yao YP, Hou W, Zhou AN (2009) UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique 59:451–469

    Article  Google Scholar 

  • Yin ZY, Chang CS, Karstunen M, Hicher PY (2010) An anisotropic elastic viscoplastic model for soft clays. Int J Solids Struct 47(5):665–677

    Article  Google Scholar 

  • Yin ZY, Karstunen M, Chang CS, Koskinen M, Lojander M (2011a) Modeling time-dependent behavior of soft sensitive clay. J Geotech Geoenviron Eng ASCE 137(11):1103–1113. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000527

    Article  Google Scholar 

  • Yin ZY, Hattab M, Hicher PY (2011b) Multiscale modeling of a sensitive marine clay. Int J Numer Anal Met 35(15):1682–1702

    Article  Google Scholar 

  • Yin ZY, Xu Q, Chang CS (2013a) Modeling cyclic behavior of clay by micromechanical approach. J Eng Mech, ASCE 139(9):1305–1309. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000516

    Article  Google Scholar 

  • Yin ZY, Xu Q, Hicher PY (2013b) A simple critical state based double-yield-surface model for clay behavior under complex loading. Acta Geotech 8(5):509–523

    Article  Google Scholar 

  • Yin ZY, Zhu QY, Yin JH, Ni Q (2014a) Stress relaxation coefficient and formulation for soft soils. Geotech Lett 4(1):45–51. https://doi.org/10.1680/geolett.13.00070c

    Article  Google Scholar 

  • Yin ZY, Zhao J, Hicher PY (2014b) A micromechanics-based model for sand-silt mixtures. Int J Solids Struct 51(6):1350–1363

    Article  Google Scholar 

  • Yin ZY, Wu ZY, Hicher PY (2018a) Modeling the monotonic and cyclic behavior of granular materials by an exponential constitutive function. J Eng Mech ASCE 144(4):04018014

    Article  Google Scholar 

  • Yin ZY, Jin YF, Shen SL, Huang HW (2016a) An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic viscoplastic model. Acta Geotech 12:849–867. https://doi.org/10.1007/s11440-016-0486-0

    Article  Google Scholar 

  • Yin ZY, Jin YF, Huang HW, Shen SL (2016b) Evolutionary polynomial regression based modelling of clay compressibility using an enhanced hybrid real-coded genetic algorithm. Eng Geol 210(5):158–167. https://doi.org/10.1016/j.enggeo.2016.06.016

    Article  Google Scholar 

  • Yin ZY, Hicher PY, Dano C, Jin YF (2017) Modeling the mechanical behavior of very coarse granular materials. J Eng Mech, ASCE 143(1):C4016006. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001059

    Article  Google Scholar 

  • Yin ZY, Jin YF, Shen SL, Hicher PY (2018b) Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement. Int J Numer Anal Methods Geomech 2018(42):70–94. https://doi.org/10.1002/nag.2714

    Article  Google Scholar 

  • Yoshida H (2012) Recent developments in jet grouting. Conference: Proceedings of the Fourth International Conference on Grouting and Deep Mixing, New Orleans, Louisiana, United States, pp 1548–1561. https://doi.org/10.1061/9780784412350.0130

  • Yuan Y, Shen SL, Wang ZF, Wu HN (2016) Automatic pressure-control equipment for horizontal jet-grouting. Autom Constr 69(2016):11–20. https://doi.org/10.1016/j.autcon.2016.05.025

    Article  Google Scholar 

  • Zhang N, Shen SL, Wu HN, Chai JC, Yin ZY (2015) Evaluation of effect of basal geotextile reinforcement under embankment loading on soft marine deposits. Geotext Geomembr 43(6):506–514

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted under the guidance of Prof. Shui-Long Shen from the Department of Civil Engineering, Shanghai Jiao Tong University. The authors would like to express their sincere thanks to Prof. Shen.

Funding

The research work described herein was funded by the National Nature Science Foundation of China (NSFC) (Grant No. 41372283). These financial supports are gratefully recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Njock, P.G.A., Chen, J., Modoni, G. et al. A review of jet grouting practice and development. Arab J Geosci 11, 459 (2018). https://doi.org/10.1007/s12517-018-3809-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3809-7

Keywords

Navigation