Skip to main content
Log in

Automatic interpretation of pumping tests data using metaheuristics

  • Technical Note
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Pumping tests data interpretation is of major importance in groundwater engineering. It is traditionally performed in a subjective manner by means of standard type curves. In this paper, an automatic interpretation of time-drawdown data has been proposed based on two algorithms, the real-coded genetic algorithm and differential evolution. The proposed approaches combine metaheuristic algorithms with an appropriate analytical drawdown solution depending upon the nature of the considered aquifer system, leaky or naturally fractured rock aquifers. The standard error of estimate (SEE) was used as a performance criterion to evaluate the discrepancies between predicted and observed drawdown data in different pumping time periods. Both of the proposed metaheuristic algorithms provide accurate aquifer parameters. For all analyzed pumping tests data, the differential evolution yielded the most accurate results with an improvement in SEE values ranged from 0.2 to 50% compared to previously published results, and exhibits speed and robustness. Furthermore, a new full range numerical evaluation of the Hantush well function based on a tanh-sinh quadrature scheme has been proposed. Our results indicate that our method is accurate, since the maximum relative error was found to be equal to 0.00036%, and practical, since it is free from special functions and could be easily incorporated within an optimization technique to analyze transient time-drawdown data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Ali M, Ahn CW, Siarry P (2014) Differential evolution algorithm for the selection of optimal scaling factors in image watermarking. Eng Appl Artif Intell 31:15–26

    Article  Google Scholar 

  • Aziz ARA, Wong KV (1992) A neural-network approach to the determination of aquifer parameters. Ground Water 30(2):164–166

    Article  Google Scholar 

  • Baalousha HM (2015) Approximation of the exponential integral (well function) using sampling methods. J Hydrol 523(1–4):278–282

    Article  Google Scholar 

  • Bailey DH, Jeyabalan KS, Li XS (2005) A comparison of three high-precision quadrature schemes. Exp Math 14(3):317–329

    Article  Google Scholar 

  • Bateni SM, Mortazavi-Naeini M, Ataie-Ashtiani B, Jeng DS, Khanbilvardi R (2015) Evaluation of methods for estimating aquifer hydraulic parameters. Appl Soft Comput J 28:541–549

    Article  Google Scholar 

  • Brown CJ (2013) Using solver to estimate aquifer parameters for non-leaky and leaky unsteady confined aquifer tests. Environ Eng Geosci 19(3):253–263

    Article  Google Scholar 

  • Chander S, Kapoor PN, Goyal SK (1981) Analysis of pumping test data using Marquardt algorithm. Ground Water 19(3):275–278

    Article  Google Scholar 

  • Cooper, HH Jr (1963) Type curves for nonsteady radial flow in an infinite leaky artesian aquifer. In: Bentall, Ray, complier, Shortcuts and special problems in aquifer tests, US Geol Surv Water-Supply Pap:1545-C

  • Deep K, Thakur M (2007) A new mutation operator for real coded genetic algorithms. Appl Math Comput 193(1):211–230

    Google Scholar 

  • Devaraj D, Yegnanarayana B (2005) Genetic-algorithm-based optimal power flow for security enhancement. IEE Proc - Gener Transm Distrib 152(6):899–905

    Article  Google Scholar 

  • Dudley Ward N, Fox C (2012) Identification of aquifer parameters from pumping test data with regard for uncertainty. J Hydrol Eng 17(7):769–781

    Article  Google Scholar 

  • Field G, Tavrisov G, Brown C, Harris A, Kreidl OP (2016) Particle filters to estimate properties of confined aquifers. Water Resour Manag 30(9):3175–3189

    Article  Google Scholar 

  • Hantush MS, Jacob CE (1955) Non-steady radial flow in an infinite leaky aquifer. Trans Am Geophys Union 36(1):95–100

    Article  Google Scholar 

  • Haupt RL, Haupt SE (2004) Practical genetic algorithms, 2nd edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. MITpress, Cambridge, Massachusetts

    Google Scholar 

  • Huang YC, Yeh HD, Lin YC (2008) A computer method based on simulated annealing to identify aquifer parameters using pumping-test data. Int J Numer Anal Methods Geomech 32(3):235–249

    Article  Google Scholar 

  • Hunt B (1977) Calculation of the leaky aquifer function. J Hydrol 33(1–2):179–183

    Article  Google Scholar 

  • Jha MK, Kumar A, Nanda G, Bhatt G (2006) Evaluation of traditional and nontraditional optimization techniques for determining well parameters from step-drawdown test data. J Hydrol Eng 11(6):617–630

    Article  Google Scholar 

  • Johns RA, Semprini L, Roberts PV (1992) Estimating aquifer properties by nonlinear least-squares analysis of pump test response. Ground Water 30(1):68–77

    Article  Google Scholar 

  • Leng CH, Yeh HD (2003) Aquifer parameter identification using the extended Kalman filter. Water Resour Res 39(3):1062

    Article  Google Scholar 

  • Li P, Qian H (2013) Global curve-fitting for determining the hydrogeological parameters of leaky confined aquifers by transient flow pumping test. Arab J Geosci 6(8):2745–2753

    Article  Google Scholar 

  • Maggi S (2017) Estimating water retention characteristic parameters using differential evolution. Comput Geotech 86:163–172

    Article  Google Scholar 

  • Mania J, Sucche M (1978) Analyse automatique des données de pompage d'essai - application aux hypothèses de Boulton et d'Hantush. J Hydrol 37(1–2):185–194

    Article  Google Scholar 

  • Mori M, Sugihara M (2001) The double-exponential transformation in numerical analysis. J Comput Appl Math 127(1–2):287–296

    Article  Google Scholar 

  • Neuman SP, Witherspoon PA (1969) Theory of flow in a confined two aquifer system. Water Resour Res 5(4):803–816

    Article  Google Scholar 

  • Nielsen KA (2007) Fractured aquifers: formation evaluation by well testing. Trafford Publishing, Victoria, BC

    Google Scholar 

  • Ouazar D, Cheng AHD, Kizamou AD (1996) Object-oriented pumping-test expert system. J Comput Civ Eng 10(1):4–9

    Article  Google Scholar 

  • Pechstein A, Attinger S, Krieg R, Copty NK (2016) Estimating transmissivity from single-well pumping tests in heterogeneous aquifers. Water Resour Res 52(1):495–510

    Article  Google Scholar 

  • Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Springer-Verlag, Germany

    Google Scholar 

  • Prodanoff JA, Mansur WJ, Mascarenhas FCB (2006) Numerical evaluation of Theis and Hantush–Jacob well functions. J Hydrol 318(1–4):173–183

    Article  Google Scholar 

  • Rajesh M, Kashyap D, Hari Prasad KS (2010) Estimation of unconfined aquifer parameters by genetic algorithms. Hydrolog Sci J 55(3):403–413

    Article  Google Scholar 

  • Sahin AU (2016) A new parameter estimation procedure for pumping test analysis using a radial basis function collocation method. Environ Earth Sci 75:200

    Article  Google Scholar 

  • Sahin AU (2018) A particle swarm optimization assessment for the determination of non-Darcian flow parameters in a confined aquifer. Water Resour Manag 32:751–767

    Article  Google Scholar 

  • Saleem ZA (1970) A computer method for pumping-test analysis. Ground Water 8(5):21–24

    Article  Google Scholar 

  • Samuel MP, Jha MK (2003) Estimation of aquifer parameters from pumping test data by genetic algorithm optimization technique. J Hydrol Eng 129(5):348–359

    Google Scholar 

  • Sarkar S, Das S, Chaudhuri SS (2016) Hyper-spectral image segmentation using Rényi entropy based multi-level thresholding aided with differential evolution. Expert Syst Appl 50:120–129

    Article  Google Scholar 

  • Sawyerr BA, Adewumi AO, Ali MM (2014) Real-coded genetic algorithm with uniform random local search. Appl Math Comput 228:589–597

    Google Scholar 

  • Sindalovskiy LN (2017) Aquifer test solutions. A practitioner’s guide with algorithms using ANSDIMAT. Springer International Publishing, Switzerland

    Book  Google Scholar 

  • Singh SK (2006) Identification of aquifer parameters from residual drawdowns: an optimization approach. Hydrolog Sci J 51(6):1139–1148

    Article  Google Scholar 

  • Smaoui H, Zouhri L, Kaidi S, Carlier E (2018) Combination of FEM and CMA-ES algorithm for transmissivity identification in aquifer systems. Hydrol Process 32(2):264–277

    Article  Google Scholar 

  • Sridharan K, Ramaswamy R, Rao NSL (1987) Identification of parameters in semiconfined aquifers. J Hydrol 93(1–2):163–173

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optimiz 11(4):341–359

    Article  Google Scholar 

  • Takahasi H, Mori M (1974) Double exponential formulas for numerical integration. Publ Res Inst Math Sci 9:721–741

    Article  Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. Am Geophys Union Trans 16(2):519–524

    Article  Google Scholar 

  • Tseng PH, Lee TC (1998) Numerical evaluation of exponential integral: Theis well function approximation. J Hydrol 205(1–2):38–51

    Article  Google Scholar 

  • Tutkun N (2009) Parameter estimation in mathematical models using the real coded genetic algorithms. Expert Syst Appl 36(2, Part 2):3342–3345

    Article  Google Scholar 

  • Valarmathi K, Devaraj D, Radhakrishnan TK (2009) Real-coded genetic algorithm for system identification and controller tuning. Appl Math Model 33(8):3392–3401

    Article  Google Scholar 

  • Van Camp M, Walraevens K (2009) Pumping test interpretation by combination of Latin hypercube parameter sampling and analytical models. Comput Geosci 35(10):2065–2073

    Article  Google Scholar 

  • Veling EJM, Maas C (2010) Hantush well function revisited. J Hydrol 393(3–4):381–388

    Article  Google Scholar 

  • Walton W (1962) Selected analytical methods for well and aquifer evaluation. Illinois State Water Survey, Bull 49: 81

  • Warren JE, Root PJ (1963) The behavior of naturally fractured reservoirs. Soc Pet Eng 3(3):245–255

    Article  Google Scholar 

  • Wilson J, Miller PJ (1978) Two-dimensional plume in uniform ground-water flow. J Hydr Div ASCE 104(HY4):503–514

    Google Scholar 

  • Yeh HD (1987) Theis’ solution by nonlinear least-squares and finite difference Newton’s method. Ground Water 25(6):710–715

    Article  Google Scholar 

  • Yeh HD, Han HY (1989) Numerical identification of parameters in leaky aquifers. Ground Water 27(5):655–663

    Article  Google Scholar 

  • Yeh HD, Huang YC (2005) Parameter estimation for leaky aquifers using the extended Kalman filter, and considering model and data measurement uncertainties. J Hydrol 302(1–4):28–45

    Article  Google Scholar 

  • Yeh HD, Lin YC, Huang YC (2007) Parameter identification for leaky aquifers using global optimization methods. Hydrol Process 21(7):862–872

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Tadj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tadj, W., Chettih, M. & Mouattah, K. Automatic interpretation of pumping tests data using metaheuristics. Arab J Geosci 11, 393 (2018). https://doi.org/10.1007/s12517-018-3730-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3730-0

Keywords

Navigation