Skip to main content
Log in

Comparative study of two relatives, MISS and Stromatolites: example from the Proterozoic Kunihar Formation, Simla Group, Lesser Himalaya

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Comparison of microbially induced sedimentary structures (MISS) and stromatolitic bearing horizons from the Proterozoic Kunihar Formation, Simla Group, Lesser Himalaya, has been scrutinised to understand the formative processes and controls on MISS and stromatolites in the context of sedimentary facies and response to sea level fluctuations. MISS structures recorded are wrinkle structures, Kinneyia ripples, load casts, domal structures, sand chips, palimpsest and patchy ripples with limited desiccation cracks. Stromatolitic morphotypes recorded are solitary, branching, wavy and domal forms of stromatolites associated with ooids, peloids and fenestral laminae. MISS structures flourished within tidal flats to shallow intertidal while stromatolites mushroomed in environments ranging from tidal to deep subtidal. MISS structures were favoured by resistant substratum, low energy conditions, consistent water supply and low terrigenous input. Stromatolites boomed when the volume of carbonate accumulation exceeded siliciclastic deposition. Fluctuating environmental conditions and sediment budget controlled morphology of stromatolites. Owing to limited siliciclastic input during deposition of dolomudstones (characterizes transgressive systems tract), microbial growth was enhanced. Calcareous shales were deposited over dolomudstones which marks the maximum flooding surface (MFS) indicating the culmination of transgression. Deposition of storm-dominated sandstone-siltstone (FA1), wave-rippled sandstones (FA2), tide-dominated sandstones (FA3), heteroliths (FA4), wackestone-packestone (FA6), boundstone (FA7) and ooid-peloid grainstone (FA8) on top of the MFS reflects initiation of highstand systems tract (HST) which is mainly characterized by stromatolitic horizons, alternation of carbonates and siliciclastics with flourishing microbial activity. Eventually, increased sedimentation in upper part of Kunihar Formation marks late stage of regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Anan TI (2014) Facies analysis and sequence stratigraphy of the Cenomanian-Turonian mixed siliciclastic-carbonate sediments in West Sinai, Egypt. Sediment Geol 307:34–46

    Article  Google Scholar 

  • Antoshkina A (2015) Ooid stromatolite association as a precursor of bioevents (Silurian, Timan-northern Ural region). Palaeoworld 24:198–206

    Article  Google Scholar 

  • Armas P, Sánchez ML (2015) Hybrid coastal edges in the Neuquén Basin (Allen Formation, Upper Cretaceous, Argentina. Andean Geol 42(1):97–113

    Google Scholar 

  • Awramik SM (2006) Respect for Stomatolites. Nature 441:700–701

    Article  Google Scholar 

  • Banerjee S, Jeevankumar S (2005) Microbial mat response to physical process generating varied forms of wrinkle marks in sand: evidences from Mesoproterozoic Koldaha Shale, central India. Sediment Geol 176:211–224

    Article  Google Scholar 

  • Banerjee S, Sarkar S, Eriksson PG (2014) Palaeoenvironmental and biostratigraphic implications of microbial mat-related structures: examples from modern Gulf of Cambay and Precambrian Vindhyan basin. J Palaeogeogr 3:127–144

    Google Scholar 

  • Bartley JK, Knoll AH, Grotzinger JP, Sergeev VN (2000) Lithification and fabric genesis in precipitated stromatolites and associated peritidal carbonates, Mesoproterozoic Billyakh Group, Siberia. In: Grotzinger JP, James NP eds., Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World, SEPM Sp Publ Tulsa 67:59–73

  • Bhargava ON (1972) The reinterpretation of the geology of the Krol Belt. Himal Geol 2:47–81

    Google Scholar 

  • Bouougri EH, Porada H (2002) Mat-related sedimentary structures in Neoproterozoic peritidal passive margin deposits of the west African Craton (anti-atlas, Morocco). Sediment Geol 153(3–4):85–106

    Article  Google Scholar 

  • Calner M, Eriksson ME (2012) The record of microbially induced sedimentary structures (MISS) in the Swedish Paleozoic In: Noffke N and Chafetz H eds., Microbial mats in siliciclastic depositional systems through time. SEPM Sp publ Tulsa 101:29–35

  • Catuneanu O, Abreu V, Bhattachary JP, Blum MD, Dalrymple R, Eriksson PG, Fielding CR, Fisher WL, Galloway WE, Gibling MR, Giles KA, Holbrook JM, Jordan R, Kendall CGSC, Macurda B, Martinsen OJ, Miall AD, Neal JE, Nummedal D, Pomar L, Posamentier HW, Pratt BR, Sarg JF, Shanley KW, Steel RJ, Strasser A, Tucker ME, Winker C (2009) Towards the standardization of sequence stratigraphy. Earth-Sci Rev 92:1–33

    Article  Google Scholar 

  • Catuneanu O, Galloway WE, Kendall CGSC, Miall AD, Posamentier HW, Strasser A, Tucker ME (2011) Sequence stratigraphy: methodology and nomenclature. Newsl Stratigr 44(3):173–245

    Article  Google Scholar 

  • Chung KW, Sum CW, Rahman AHA (2015) Stratigraphic succession and depositional framework of the Sandakan Formation, Sabah (Penyesaran Stratigrafi dan Rangka Bentuk Pemendapan Formasi Sandakan, Sabah). Sains Malaysiana 44(7):931–940

    Article  Google Scholar 

  • Della Porta G, Barilaro F, Ripamonti M (2011) Non-marine carbonates—facies, diagenesis and porosity development. Search and Discovery Article #30173 AAPG Annual Convention and Exhibition, April 10–13, 2011, Houston, Texas

  • Des Raj (1997) Evaluation of the stratigraphic status of the volcanic exposed around Tattapani, Shimla District, Himachal Pradesh. Unpublished Records of Geological Survey of India, Field season, 1995–96

  • Draganits E, Noffke N (2004) Siliciclastic stromatolites and other microbially induced sedimentary structures in an early evonian barrier island environment (Muth Formation, NW Himalayas). J Sediment Res 74(2):191–202

    Article  Google Scholar 

  • Dupraz C, Pattisina R, Verrecchia EP (2006) Translation of energy into morphology: simulation of stromatolite morphospace using a stochastic model. Sediment Geol 185(3–4):185–203

    Article  Google Scholar 

  • Erikson PG, Porada H, Banerjee S, Bouougri E, Sarkar S, Bumby AJ (2007) Mat-destruction features. In: Schiber J, Bose PK, PG E, et al. (eds) Atlas of microbial mat features preserved with the clastic rock record. Elsevier, Amsterdam, pp. 39–52

    Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks, vol 976. Springer, Berlin

    Book  Google Scholar 

  • Foster JS, Green SJ (2011) Microbial diversity in modern stromatolites. In: V.C. Tewari and J. Seckbach, eds., Stromatolites: interaction of microbes with sediments, cellular origin, life in extreme habitats and astrobiology 18:383–405

  • Fralick P, Riding R (2015) Steep rock Lake: sedimentology and geochemistry of an Archean carbonate platform. Earth-Sci Rev 151:132–175

    Article  Google Scholar 

  • Frank W, Bhargava ON, Miller CH Banerjee DM (2001) A review of the Proterozoic in the Himalaya and the northern Indian Shield. J Asian Earth S, Special Abstract Issue, 16th Himalaya–Karakoram–Tibet Workshop, Austria, April 3–5, 2001, 19 (3A):18

  • Gehling JG (2000) Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara member within the Rawnsley quartzite, South Australia. Precambrian Res 100(1–3):65–95

    Article  Google Scholar 

  • Gerdes G, Klenke T, Noffke N (2000) Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology 47:279–308

    Article  Google Scholar 

  • Grotzinger JP (1989) Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. In: Crevello PD, Wilson JL, Sarg JF, Read JF (eds) Controls on carbonate platform and basin development, SEPM Sp Publi Tulsa, vol 44, pp. 79–106

    Chapter  Google Scholar 

  • Jiang G, Christie-Blick N, Kaufman AJ, Banerjee DM, Rai V (2002) Sequence stratigraphy of the neoproterozoic Infra Krol Formation and Krol Formation, Lesser Himalaya, India. J Sediment Res 72(4):524–542

    Article  Google Scholar 

  • Jiang G, Christie-Blick N, Kaufman AJ, Banerjee DM, Rai V (2003) Carbonate platform growth and cyclicity at a terminal Proterozoic passive margin, Infra Krol Formation and Krol Group, Lesser Himalaya, India. Sedimentology 50:921–952

    Article  Google Scholar 

  • Kah LC, Knoll AH (1996) Microbenthic distribution in Proterozoic tidal flats: environmental and taphonomic considerations. Geology 24:79–82

    Article  Google Scholar 

  • Karim KH (2007) Stratigraphy and lithology of the Avroman Formation (Triassic), north East Iraq. Iraqi J Earth Sci 7(1):1–12

    Google Scholar 

  • Komatsu T, Naruse H, Shigeta Y, Takashima R, Maekawa T, Dang HT, Dinh TC, Nguyen HH, Tanaka G, Sone M (2014) Lower Triassic mixed carbonate and siliciclastic setting with Smithian–Spathian anoxic to dysoxic facies, An Chau basin, northeastern Vietnam. Sediment Geol 300:28–48

    Article  Google Scholar 

  • Kumar R, Brookfield ME (1987) Sedimentary environments of the Simla Group (Upper Precambrian), Lesser Himalaya, and their paleotectonic significance. Sediment Geol 52:27–43

    Article  Google Scholar 

  • Lewis DW (1980) Storm generated graded beds and debris flow deposits with Ophiomorpha in a shallow offshore Oligocene sequence at Welsa, South Island New Zealand New Zealand. J Geol Geophys 23(3):353–369

    Article  Google Scholar 

  • Logan BW, Rezak R, Ginsburg RN (1964) Classification and environmental significance of algal stromatolites. J Geol 72(1):68–83

    Article  Google Scholar 

  • Logan BW, Hoffman P, Gebelein CD (1974) Algal Mats, Cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. Am Assoc Pet Geol Mem 13:38–84

    Google Scholar 

  • McKenzie NR, Hughes NC, Myrow PM, Xiao S, Sharma M (2011) Correlation of Precambrian–Cambrian sedimentary successions across northern India and the utility of isotopic signatures of Himalayan lithotectonic zones. Earth Planet Sci Lett 312:471–483

    Article  Google Scholar 

  • Medlicott HP (1864) On the geological structure and relations of the southern portion of the Himalayan ranges between the rivers Ganges and Ravee. Mem Geol Surv India 3(2):212

    Google Scholar 

  • Merz-Preig M (2000) Calcification in cyanobacteria. In: Riding R, Awramik SM (eds) Microbial sediments. Springer-Verlag, Berlin, pp. 50–56

    Chapter  Google Scholar 

  • Momta PS, Omoboh JO, Odigi MI (2015) Sedimentology and depositional environment of D2 sand in part of Greater Ughelli Depobelt, Onshore Niger Delta, Nigeria. Am J Eng App Sc 8(4):556–566

    Article  Google Scholar 

  • Myrow PM, Snell KE, Hughes NC, Paulsen TS, Heim NA, Parcha SK (2006) Cambrian depositional history of the Zanskar valley region of the Indian Himalaya: tectonic implications. J Sediment Res 76:364–381

    Article  Google Scholar 

  • Nichols G (2009) Sedimentology and stratigraphy (2nd ed.). John Wiley and Sons, 168 ISBN 978–1–4051-9379-5

  • Nisbett EG, Fowler CMR (1999) Archean metabolic evolution of microbial mats. Proc R Soc Lond 266:2375–2385

    Article  Google Scholar 

  • Noffke N (2000) Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment (Lower Arenigian, Montagne Noire, France). Sediment Geol 136:207–215

    Article  Google Scholar 

  • Noffke N, Gerdes G, Klenke T (2003a) Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic). Earth Sci Rev 62:163–176

    Article  Google Scholar 

  • Noffke N, Hazen R, Nhelko N (2003b) Earth’s earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa). Geology 31:673–676

    Article  Google Scholar 

  • Noffke N (2010) Geobiology. Microbial mats in sandy deposits from the Archean Era to today. Heidelberg, Springer, 196

  • Noffke N, Arawmik SM (2013) Stromatolites and MISS-differences between relatives. GSA Today 23(9):4–9

    Article  Google Scholar 

  • Owen G, Moretti M (2010) Identifying triggers for liquefaction induced soft-sediment deformation in san. Sediment Geol 235:141–147

    Article  Google Scholar 

  • Pflüger F, Gresse PG (1996) Microbial sand chips—a non-actualistic sedimentary structure. Sediment Geol 102(3–4):263–274

    Article  Google Scholar 

  • Reineck H, Wunderlich F (1968) Classification and origin of flaser and lenticular bedding. Sedimentology 99(1–2):99–104

    Article  Google Scholar 

  • Riding R (2011) The nature of stromatolites: 3,500 million years of history and a century of research. In: Reitner J, Quéric NV Arp G (eds). Advances in Stromatolite Geobiology. Springer, Heidelberg, Lecture notes in earth sciences 131:29–74

  • Sakuna-Schwartz D, Feldens P, Schwarzer K, Khokiattiwong S, Stattegger K (2015) Internal structure of event layers preserved on the Andaman Sea continental shelf, Thailand: tsunami vs. storm and flash-flood deposits. Nat Hazards Earth Syst Sci 15:1181–1199

    Article  Google Scholar 

  • Samanta P, Mukhopadhyay S, Mondal A, Sarkar S (2011) Microbial mat structures in profile: the Neoproterozoic Sonia sandstone, Rajasthan, India. J Asian Earth Sci 40(2):542–549

    Article  Google Scholar 

  • Sarkar S, Banerjee S, Samanta P, Jeevankumar S (2006) Microbial mat-induced sedimentary structures in siliciclastic sediments: examples from the 1.6 Ga Chorhat Sandstone, Vindhyan Supergroup, M.P., India. J Earth Syst Sci 115:49–60

    Article  Google Scholar 

  • Sarkar S, Bose PK, Samanta P, Sengupta P, Eriksson PG (2008) Microbial mat mediated structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and their implications for Proterozoic sedimentation. Precambrian Res 162:248–263

    Article  Google Scholar 

  • Sarkar S, Banerjee S, Samanta P, Chakraborty N, Chakraborty PP, Mukhopadhyay S, Singh AK (2014) Microbial mat records in siliciclastic rocks: examples from four Indian Proterozoic basins and their modern equivalents in Gulf of Cambay. J Asian Earth Sci 91:362–377

    Article  Google Scholar 

  • Schieber J, Bose PK, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneau O (2007) Atlas of microbial mat features preserved within the siliciclastic rock record. Atlases in Geosciences. Elsevier, Amsterdam, p. 311

    Google Scholar 

  • Seckbach J, Oren A, (2010) Microbial mats, Modern and ancient micro organisms in stratified systems. Springer, New York 14:321–339'

  • Seilacher A, Bose PK, Pflüger F (1998) Triploblastic animals more than 1 billion years ago: Trace fossil evidence from India. Sci 282:80–83

  • Sheehan PM, Harris MT (2004) Microbialite resurgence after the Late Ordovician extinction. Nature 430:75–78

    Article  Google Scholar 

  • Spalletti LA, Poire DG, Schwarz E, Veiga GD (2001) Sedimentologic and sequence stratigraphic model of a Neocomian marine carbonate-siliciclastic ramp: Neuquén Basin, Argentina. J S Am Earth Sci 14:609–624

    Article  Google Scholar 

  • Srikantia SV, Sharma RD (1971) Simla Group—a classification of the ‘Chail Series’, ‘Jaunsar Series’ and Simla Series’ in the Simla Himalaya. J Geol Soc India 12(III):234–240

    Google Scholar 

  • Taron PB (1979) Basic volcanics of Uttar Pradesh and Himachal Pradesh, Lesser Himalaya- a review. Misc Publ Geol Surv India 41:315–336

    Google Scholar 

  • Thomson D, Rainbird RH, Dix G (2014) Architecture of a Neoproterozoic intracratonic carbonate ramp succession: Wynniatt Formation, Amundsen Basin, Arctic Canada. Sediment Geol 299:119–138

    Article  Google Scholar 

  • Tomas S, Homann M, Amour F, Christ N, Immenhauser A, Agar SM, Kabiri L (2013) Alternation of microbial mounds and ooids shoals (Middle Jurassic, Morocco): response to Palaeoenvironmental changes. Sediment Geol 294:68–82

    Article  Google Scholar 

  • Vakarelov BK, Ainsworth RB, MacEachern JA (2012) Recognition of wave-dominated, tide-influenced shoreline systems in the rock record: variations from a microtidal shoreline model. Sediment Geol 279:23–41

    Article  Google Scholar 

  • Walter MR, Heys GR (1985) Links between the rise metazoa and decline of stromatolites. Precambrian Res 29:149–174

    Article  Google Scholar 

  • Webb GE (2001) Biologically induced carbonate precipitation in reefs through time. In: Stanley GD (ed) The history and sedimentology of ancient reef systems. Kluwer Academic/Plenum Publishers, New York, pp. 159–203

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank the Oil and Natural Gas Corporation, India, for sanctioning the project and for providing financial support. The first author gratefully acknowledges Prof. Ravindra Kumar (retired) of the Department of Geology, Panjab University, Chandigarh, India, for introducing us to the basin and for sharing his knowledge. We thank the university authorities for providing the infrastructural support that was necessary for the work. We are grateful to Prof. Bhabani Prasad Mukhopadhyay of the Department of Earth Sciences, IIEST, for his participation and support during the field work. We thank Ms. Priyanka Mazumdar and Ms. Tithi Banerjee, research scholars of the department, for their assistance and company during field and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananya Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, A., Thorie, A. Comparative study of two relatives, MISS and Stromatolites: example from the Proterozoic Kunihar Formation, Simla Group, Lesser Himalaya. Arab J Geosci 9, 554 (2016). https://doi.org/10.1007/s12517-016-2549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2549-9

Keywords

Navigation