Skip to main content
Log in

Integrated magnetic and gravity surveys for geothermal exploration in Central Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Delijan region of Central Iran is a popular tourist spot due to the occurrence of hot springs and having the greatest geothermal fields in Iran. In the years 2011 and 2012, an integrated geophysical investigation, using magnetic and gravity methods, was conducted over the hot springs in order to characterize geophysical anomaly sources corresponding to the geothermal resources. The results of the geophysical investigations revealed the heat source and the reservoir of the Delijan geothermal system (DGS). Based on results of Euler depth estimation and 3D inversion of magnetic and gravity data, the depths and extension of the discovered structures were determined with a good correlation with the geological information. The results of magnetic interpretation show that the main source (heat source) of the geothermal system is located NE of the Delijan-Abgarm fault (DAf) zone at depths of 2500 to 5000 m, and the results of gravity interpretation show that the reservoir of the geothermal system is located along the DAf zone at depths of 1000 to 4000 m. Also, the horizontal gradients of gravity data reveal complex fault systems which are acting as the preferential paths to circulate the hydrothermal fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig 9
Fig. 10

Similar content being viewed by others

References

  • Abiye TA, Haile T (2008) Geophysical exploration of the Boku geothermal area, Central Ethiopian Rift. Geothermics 37(6):586–596

    Article  Google Scholar 

  • Baranov V (1957) A new method for interpretation of aeromagnetic maps: pseudogravimetric anomalies. Geophysics 22(2):359–383

    Article  Google Scholar 

  • Beiki M (2010) Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics 75(6):I59–I74

    Article  Google Scholar 

  • Beitollahi A (1996) Travertine formation and the origin of the high natural radioactivity in the region of Mahallat hot springs. The M.Sc. Thesis, Islamic Azad University of Tehran, Iran, 120 pp

  • Gottsmann J, Camacho AG, Martí J, Wooller L, Fernández J, García A, Rymer H (2008) Shallow structure beneath the Central Volcanic Complex of Tenerife from new gravity data: implications for its evolution and recent reactivation. Phys Earth Planet In 168:212–230

    Article  Google Scholar 

  • Kalateh AN, Kahoo AR (2013) Estimation of 3D density distribution of chromite deposits using gravity data. J Min Environ 4:97–104

    Google Scholar 

  • Keating P, Pilkington M (2004) Euler deconvolution of the analytic signal and its application to magnetic interpretation. Geophys Prospect 52:165–182

    Article  Google Scholar 

  • Li Y, Oldenburg DW (1996) 3D inversion of magnetic data. Geophysics 61:394–408

    Article  Google Scholar 

  • Li Y, Oldenburg DW (1998a) Separation of regional and residual magnetic field data. Geophysics 63:431–439

    Article  Google Scholar 

  • Li Y, Oldenburg DW (1998b) 3D inversion of gravity data. Geophysics 63:109–119

    Article  Google Scholar 

  • Louro VHA, Mantovani MSM (2013) 3D inversion and modeling of magnetic and gravimetric data characterizing the geophysical anomaly source in Pratinha I in the southeast of Brazil. J Appl Geophys 80:110–120

    Article  Google Scholar 

  • McKenzie DS (1972) Active tectonics of the Mediterranean region. Geophys J Roy Astron Soc 30:109–185

    Article  Google Scholar 

  • Mirzaei M, Moghaddam M, Oskooi B, Ghadimi F, Jazayeri S (2013) Processing and interpretation of ground magnetic data corresponding to geothermal resources using Euler and AN-EUL method, north-east of Mahallat. J Earth Space Phys 39:83–96

    Google Scholar 

  • Mohammadzadeh M, Mirzaei S, Mirzaei M, Oskooi B, Heydarian N (2015) Modeling and interpretation of ground magnetic data associated geothermal resources, north-west of Delijan. Iran J Geol 34:39–55

    Google Scholar 

  • Montesinos FG, Camacho AG, Nunes JC, Oliveira CS, Vieira R (2003) A 3-D gravity model for a volcanic crater in Terceira Island (Azores). Geophys J Int 154:393–406

    Article  Google Scholar 

  • Nabighian MN (1984) Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: fundamental relations. Geophysics 49:780–786

    Article  Google Scholar 

  • National Geophysical Data Centre (2010) GEOMAG computer program and the 1990 coefficients for IGRF model, World Data Centre-A for Solid Earth Geophysics, NOAA, E/GCI, 325 Broadway, Boulder, CO 80304, USA

  • Nouraliee J, Shahhosseini A (2012) Geological map of Khorhe geothermal region, scale: 1:25,000. Niroo Research Institute (NRI)

  • Nouraliee J, Porkhial S, Moghaddam MM, Mirzaei S, Ebrahimi D, Rahmani MR (2015) Investigation of density contrasts and geological structures of hot springs in the Markazi province of Iran using the gravity method. Russ Geol Geophys 56:1791–1800

    Article  Google Scholar 

  • O’Leary DW, Mankinen EA, Blakely RJ, Langenheim VE, Ponce DA (2002) Aeromagnetic expression of buried basaltic volcanoes near Yucca mountain, Nevada: U. S. Geological Survey Open-File Report 02-020, 48 pp

  • Oldenburg DW, Pratt DA (2007) Geophysical inversion for mineral exploration–a decade of progress in theory and practice. In: Milkereit B (ed) Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 61–95

  • Oskooi B, Darijani M (2013) 2D inversion of magnetotelluric data from Mahallat geothermal field in Iran using finite element approach. Arab J Geosci. doi:10.1007/s12517-013-893-6

    Google Scholar 

  • Oskooi B, Darijani M, Mirzaie M (2013) Investigation of electrical resistivity and geological structure on the hot springs in Markazi province of Iran using magnetotelluric method. Bollettino di Geofisica ed Applicata 54:245–256

    Google Scholar 

  • Oskooi B, Mirzaei M, Mohammadi B, Moghaddam MM, Ghadimi F (2016) Integrated interpretation of the magnetotelluric and magnetic data from Mahallat geothermal field, Iran. Stud Geophys Geod 60:141–161

    Article  Google Scholar 

  • Reid AB, Thurston JB (2014) The structural index in gravity and magnetic interpretation: errors, uses and abuses. Geophysics 79:J61–J66

    Article  Google Scholar 

  • Reid AB, Allsop JM, Granser H, Millett AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55:80–91

    Article  Google Scholar 

  • Represas P, Santos FA, Ribeiro J (2013) Interpretation of gravity data to delineate structural features connected to low-temperature geothermal resources at Northeastern Portugal. J Appl Geophys 92:30–38

    Article  Google Scholar 

  • Rezaei M, Ghorbani M, Bomeri M (2009) The hydrogeology and geothermology of the Mahallat hot springs. In: 1st National Conference on Hydrogeology, Behbehan, Iran, extended abstract, 4 pp

  • Salem A, Furuya S, Aboud E, Elawadi E, Jotaki H, Ushijima K (2005) Subsurface structural mapping using gravity data of Hohi geothermal area, Central Kyushu, Japan. Proceedings World Geothermal Congress, Antalya, Turkey

  • Schiavone D, Loddo M (2007) 3-D density model of Mt. Etna Volcano (Southern Italy). J Volcanol Geotherm Res 164:161–175

    Article  Google Scholar 

  • Soengkono S (2011) Deep interpretation of gravity and airborne magnetic data over the Central Taupo Volcanic Zone, New Zealand Geothermal Workshop

  • Soligo M, Tuccimei P, Barberi R, Delitala MC, Miccadei E, Taddeuci A (2002) U/Th dating of freshwater travertine from Middle Velino Valley (Central Italy): paleoclimatic and geological implications. Palaeogeogr Palaeoclimatol Palaeoecol 184:147–161

    Article  Google Scholar 

  • SUNA (1998) Country geothermal potential survey. 1st Phase Report to the Renewable Energies Office, Ministry of Energy, Islamic Republic of Iran, 306

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohammadzadeh Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh Moghaddam, M., Mirzaei, S., Nouraliee, J. et al. Integrated magnetic and gravity surveys for geothermal exploration in Central Iran. Arab J Geosci 9, 506 (2016). https://doi.org/10.1007/s12517-016-2539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2539-y

Keywords

Navigation