Skip to main content
Log in

Liquefaction susceptibility study of sandy soils: effect of low plastic fines

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The objective of this paper is to present a study on the mechanical behavior of three Algerian sands through cyclic triaxial tests with focus on the effect of the fines content. The particularity of this study is to keep the amount of the sand material matrix as a constant parameter for the entire range of fines content. This choice was considered due to the difficulty to determine experimentally the maximum and minimum void ratios of soil mixtures for fines content exceeding 15 %. The materials used in this investigation are originated from two different regions (Chlef and Boumerdes) in northern Algeria and are known for their higher seismicity levels. By varying the cyclic stress ratios and the proportion of fines contained naturally in the sand, a series of cyclic triaxial tests were carried out on reconstituted samples with a density index of 0.5 and an initial confining pressure of 100 kPa, on a servo-controlled dynamic machine with a sinusoidal frequency signal of 0.05 Hz and alternated symmetrical cycles. Comparing the clean and natural sands, the test results indicate that the presence of fines influences significantly the liquefaction resistance. Indeed, the fines content increases the liquefaction resistance for Zemmouri sand, decreases or stabilizes it for the Rass and Chlef sands, respectively. The effect of fines on the Chlef and Rass sands is in good agreement with the published literature, where the liquefaction resistance decreases to a threshold value and then increases with the increase of the fines content. This study can be used in soil classification and determination of liquefaction potential of seismic areas with smaller amounts of fines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

B :

Skempton’s coefficient (B = Δu c/Δp cell)

C c :

Coefficient of curvature (C c = (D 30)2/(D 10 × D 60))

CSR:

Cyclic stress ratio (CSR = q m/2σc)

C u :

Coefficient of uniformity (C u = D 60/D 10)

D (in millimeter):

Diameter

D 10 (in millimeter):

Effective grain size

D 30, D 60 (in millimeter):

Grain size corresponding to 10 and 60 % finer, respectively

D 50 (in millimeter):

Mean grain size

e :

Global void ratio

e f :

Interfine void ratio

e max :

Maximum void ratio

e min :

Minimum void ratio

E S (in percent):

Sand equivalent

e s :

Intergranular void ratio

FC (in percent):

Fines content

FCth (in percent):

Threshold fines content

f (Hz):

Frequency

G s :

Specific gravity of sand

H (in millimeter):

Height

I D :

Density index (I D = (e maxe)/(e maxe min))

I p (in percent):

Plasticity index (I p = w l − w p)

N :

Number of cycles of loading

N Liq :

Number of cycles to liquefaction

p’ (in kilopascal):

Effective mean stress (p′ = (σ1 + 2σ3)/3)

q (in kilopascal):

Deviator stress (q = σ1 − σ3)

q m (in kilopascal):

Loading amplitude

R 2 :

Coefficient of correlation

SP/Sm:

Poorly graded sand

Δp cell (in kilopascal):

Cell pressure increment

Δu (in kilopascal):

Excess of pore water pressure

Δu c (in kilopascal):

Pore pressure increment

ε a (in percent):

Axial strain

ρ dmax (in gram per cubic centimeter):

Maximum density of the solid grains

ρ dmin (in gram per cubic centimeter):

Minimum density of the solid grains

σc (in kilopascal):

Initial confining pressure

w l (in percent):

Liquid limit

w p (in percent):

Plastic limit

References

  • AFNOR, Norme NF P 94-059 (2000) Détermination des masses volumiques minimale et maximale des sols non cohérents, Reconnaissance et essais. AFNOR

  • AFPS, Association Française du Génie Parasismique (2003) Le séisme du 21 mai 2003 en Algérie. Rapport préliminaire de la mission AFPS

  • Amini F, Qi GZ (2000) Liquefaction testing of stratified silty sands. J Geotech Geoenviron Eng ASCE 126(3):208–217

    Article  Google Scholar 

  • Arab A, Belkhatir M (2012) Fines content and cyclic preloading effect on liquefaction potential of silty sand: a laboratory study. Acta Polytechnica Hungarica 9(4):47–64

    Google Scholar 

  • Argus DF, Gordon RG (1991) No‐net‐rotation model of current plate velocities incorporating plate motion model NUVEL‐1. Geophys Res Lett 18(11):2039–2042

    Article  Google Scholar 

  • ASTM D 4253–00 (2002) Standard test method for maximum index density and unit weight of soils using a vibratory table. Annual Book of ASTM Standards. American Society for Testing and Materials, West Conshohocken, pp 1–14

    Google Scholar 

  • ASTM D 4254–00 (2002) Standard test method for minimum index density and unit weight of soils and calculation of relative density. American Society for Testing and Materials, West Conshohocken, pp 1–9

    Google Scholar 

  • Bayat E, Bayat M (2012) Effect of grading characteristics on the undrained shear strength of sand: review with new evidences. Arab J Geosci. doi:10.1007/s12517-012-0670-y

    Google Scholar 

  • Bayat M, Bayat E, Aminpour H, Salarpour A (2012) Shear strength and pore-water pressure characteristics of sandy soil mixed with plastic fine. Arab J Geosci. doi:10.1007/s12517-012-0753-9

    Google Scholar 

  • Belkhatir M, Arab A, Della N, Missoum H, Schanz T (2010) Influence of inter-granular void ratio on monotonic and cyclic undrained shear response of sandy soils. Comptes Rendus Mecanique 338:290–303

    Article  Google Scholar 

  • Benahmed N (2001) Comportement mécanique d’un sable sous cisaillement monotone et cyclique. PhD Dissertation, Ecole Nationale des Ponts et Chaussées, Paris

  • Bouferra R, Shahrour I (2004) Influence of fines on the resistance to liquefaction of a clayey sand. Ground Improvement 8(1):1–5

    Article  Google Scholar 

  • Bouhadad Y, Nour A, Slimani A, Laouami N, Belhai D (2004) The Boumerdes (Algeria) earthquake of May 21, 2003 (Mw = 6.8): Ground deformation and intensity. J Seismol 8:497–506

    Article  Google Scholar 

  • Canou J (1989) Contribution à l’étude et à l’évaluation des propriétés de liquéfaction d’un sable. PhD Dissertation, Ecole Nationale des Ponts et Chaussées, Paris

  • Chang NY, Yeh ST, Kaufman LP (1982) Liquefaction potential of clean and silty sands. In: Proceedings of the Third International Earthquake Microzonation Conference, Seattle, USA, 2:1017–1032

  • Choobbasti AJ, Ghalandarzadeh A, Esmaeili A (2013) Experimental study of the grading characteristic effect on the liquefaction resistance of various graded sands and gravelly sands. Arab J Geosci. doi:10.1007/s12517-013-0886-5

    Google Scholar 

  • CRAAG, Centre de Recherche en Astronomie Astrophysique et Géophysique (1994) Les séismes en Algérie de 1365 à 1992. CRAAG Report, Algiers

  • Djafar Henni A, Arab A, Belkhatir M, Hamoudi SA, Khelafi H (2011) Undrained behavior of silty sand: effect of the overconsolidation ratio. Arab J Geosci. doi:10.1007/s12517-011-0365-9

    Google Scholar 

  • EERI, Earthquake Engineerin Research Institute (1983) El-Asnam, Algeria earthquake of October 10, 1980—a reconnaissance and engineering report. National Research Council Committee on Natural. Disasters, EERI

    Google Scholar 

  • Erten D, Maher MH (1995) Cyclic undrained behaviour of silty sand. Soil Dyn Earthq Eng 14:115–123

    Article  Google Scholar 

  • Finn WL, Ledbetter RH, Wu G (1994) Liquefaction on silty soils: design and analysis. In: Ground failures under seismic conditions, Geotechnical special publication no. 44, ASCE, pp 51–76

  • Hamane M, Bensafi M, Nedjar D, Djellouli F, Ramdane K-E, Hamada M, Koganei K, Meguro K, Miyajima M, Saito T (2007) Dommages provoqués par le séisme de Boumerdes et recommandations pour la réduction du risque sismique. 7ème Colloque National AFPS 2007, Ecole Centrale Paris, Châtenay Malabry

  • Ishihara K, Troncoso J, Kawase Y, Takahashi Y (1980) Cyclic strength characteristics of tailings materials. Soils Found 20(4):127–142

    Article  Google Scholar 

  • Ishihara K (1993) Liquefaction and flow failure during earthquakes. Geotechnique 43(3):351–415

    Article  Google Scholar 

  • Kenny TC (1977) Residual strengths of mineral mixtures. In: Proceedings of the 9th International Conference Soil Mech. and Found. Eng., Tokyo 1:155–160

  • Koester JP (1994) The influence of fine type and content on cyclic strength. In: Ground failures under seismic condition, Geotechnical special publication no. 44, ASCE, pp 17–33

  • Krim A, Zitouni Z, Arab A, Belkhatir M (2013) Identification of the behavior of sandy soil to static liquefaction and microtomography. Arab J Geosci 6:2211–2224

    Article  Google Scholar 

  • Lade PV, Duncan JM (1973) Cubical triaxial tests on cohesionless soil. Journal Soil Mechanics and Foundations Division, ASCE 99(SM10):793–812

    Google Scholar 

  • Lade PV, Yamamuro JA (1997) Effects of non-plastic fines on static liquefaction of sands. Canadian Geotech J 34:918–928

    Article  Google Scholar 

  • Meghraoui M, Morel JL, Andrieux J, Dahmani M (1996) Tectonique plio-quaternaire de la chaîne tello-rifaine et de la mer d’Alboran: Une zone complexe de convergence continent-continent. Bull Soc Géol France 167(1):141–157

    Google Scholar 

  • Missoum H, Belkhatir M, Bendani K (2011) Undrained shear strength response under monotonic loading of Chlef (Algeria) sandy soil. Arab J Geosci. doi:10.1007/s12517-011-0387-3

    Google Scholar 

  • Mitchell JK (1993) Fundamental of Soil Behaviour, 2nd edn. John Wiley–Interscience, New York

    Google Scholar 

  • Montenat C, Barrier P, Ott d’Estevou P, Hibsch C (2007) Seismites: an attempt at critical analysis and classification. Sediment Geol 196:5–30

    Article  Google Scholar 

  • Naeini SA, Baziar MH (2004) Effect of fines content on steady-state strength of mixed and layered samples of a sand. Soil Dynam Earth Eng 24:181–187

    Article  Google Scholar 

  • Perlea VG, Koester JP, Prakash, S (1999) How liquefiable are cohesive soils? In: Proceedings of the Second International Conference on Earthquake Geotechnical Engineering, Lisboa, Portugal, pp 611–618

  • Polito CP (1999) The Effect of non-plastic and plastic fines on the liquefaction of sandy soils. PhD Dissertation, Virgina Polytechnic Institute and State University, Virginia, USA

  • Seed HB, Harder LF (1990) SPT-based analysis of cyclic pore pressure generation and undrained residual strength. H. Bolton Seed Memorial Symposium, Berkeley, BiTech Publishers Ltd., Vancouver 2:351–76

  • Skempton AW (1954) The pore-pressure coefficients A and B. Geotechnique 4(4):143–147

    Article  Google Scholar 

  • Thevanayagam S (1998) Effect of fines and confining stress on undrained shear strength of silty sands. J Geotech Geoenviron Eng ASCE 124(6):479–491

    Article  Google Scholar 

  • Thevanayagam S, Martin GR (2002) Liquefaction in silty soils - screening and remediation issues. J Soil Dyn Earthq Eng 22:1035–1042

    Google Scholar 

  • Troncoso JH, Verdugo R (1985) Silt content and dynamic behaviour of tailing sands. In: Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, pp 1311–1314

  • USGS, United States Geological Survey’s (2003) Earthquake Hazards Program. Earthquake report on northern Algeria

  • Vaid YP (1994) Liquefaction of silty soils. In: Ground failure under seismic condition, Geotechnical special publication no. 44, ASCE, pp 1–16

  • Xenaki VC, Athanasopoulos GA (2003) Liquefaction resistance of sand-silt mixtures: an experimental investigation of the effect of fines. Soil Dyn Earthq Eng 23:183–194

    Google Scholar 

  • Zlatovic S, Ishihara K (1997) Normalised behaviour of very loose non-plastic soils: effects of fabric. Soils Found 37(4):47–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Benghalia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benghalia, Y., Bouafia, A., Canou, J. et al. Liquefaction susceptibility study of sandy soils: effect of low plastic fines. Arab J Geosci 8, 605–618 (2015). https://doi.org/10.1007/s12517-013-1255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-1255-0

Keywords

Navigation