Skip to main content
Log in

Factors controlling the distribution of metals in intertidal mudflat sediments of Vaitarna estuary, North Maharashtra coast, India

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Sediment cores collected from intertidal mudflats of Vaitarna estuary were investigated for distributions of sediment components, organic carbon, metals (iron, manganese, aluminum, copper, zinc, cobalt, nickel, and lead) in bulk sediments, as well as clay-sized fraction (<2 μm). Sorting of grain size under the influence of varying hydrodynamic energy conditions within Vaitarna estuary was discussed. Index of geoaccumulation indicated different levels of contamination for the studied metals at three locations. Pb and Zn were mainly found to be associated with clay fraction and showed exclusive lithogenic origin. While all the other metals showed signatures of anthropogenic origin in addition to that of lithogenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238. doi:10.1007/s10661-007-9678-2

    Article  Google Scholar 

  • Achyuthan H, Richardmohan D, Srinivasalu S, Selvaraj K (2002) Trace metals concentrations in the sediment cores of estuary and tidal zones between Chennai and Pondicherry, along the east coast of India. Indian J Mar Sci 31(2):141–149

    Google Scholar 

  • Allen JRL, Rae JE, Zanin PE (1990) Metal speciation (Cu, Zn, Pb) and organic matter in an oxic salt marsh, Severn estuary, Southwest Britain. Mar Pollut Bull 21(12):574–580

    Article  Google Scholar 

  • Aloupi M, Angelidis MO (2002) The significance of coarse sediments in metal pollution studies in the coastal zone. Water Air Soil Pollut 133:121–131

    Article  Google Scholar 

  • Álvarez-Iglesias P, Rubio B, Pérez-Arlucea M (2006) Reliability of subtidal sediments as “geochemical recorders” of pollution input: San Simón Bay (Ría de Vigo, NW Spain). Estuar Coast Shelf Sci 70:507–521

    Article  Google Scholar 

  • Attia OEA, Abu Khadra AM, Nawwar AH, Radwan GE (2012) Impacts of human activities on the sedimentological and geochemical characteristics of Mabahiss Bay, North Hurghada, Red Sea, Egypt. Arab J Geosci 5:481–499

    Article  Google Scholar 

  • Buchman MF (1999) NOAA screening quick reference tables. NOAA HAZMAT Report 99-1, (p 12). Seattle, WA, Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration

  • Caetano M, Prego R, Vale C, de Pablo H, Marmolejo-Rodríguez J (2009) Record of diagenesis of rare earth elements and other metals in a transitional sedimentary environment. Mar Chem 116:36–46

    Article  Google Scholar 

  • Chang M-L, Sun Y-C, Doong R-A, Wu S-C, Fu C-T (2007) Concentrations and correlations of trace metals in estuarine sediments—interpretation by multivariate statistical analysis and elemental normalization. J Env Eng Manage 17(2):143–150

    Google Scholar 

  • Covelo EF, Vega FA, Andrade ML (2007) Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils I. Selectivity sequences. J Hazard Mater 147:852–861

    Article  Google Scholar 

  • Cundy AB, Croudace IW (1995) Sedimentary and geochemical variations in a saltmarsh/mudflat environment from the mesotidal Humble Estuary, southern England. Mar Chem 51:115–132

    Article  Google Scholar 

  • Dessai DVG, Nayak GN (2009) Distribution and speciation of selected metals in surface sediments, from the tropical Zuari estuary, central west coast of India. Environ Monit Assess 158:117–137

    Article  Google Scholar 

  • Dolch T, Hass HC (2008) Long-term changes of intertidal and subtidal sediment compositions in a tidal basin in the northern Wadden Sea (SE North Sea). Helgol Mar Res 62:3–11. doi:10.1007/s10152-007-0090-7

    Article  Google Scholar 

  • Du JZ, Mu HD, Song HQ, Yan SP, Gu YJ, Zhang J (2008) 100 years of sediment history of heavy metals in Daya Bay, China. Water Air Soil Pollut 190:343–351. doi:10.1007/s11270-007-9593-8

    Article  Google Scholar 

  • Fernandes L, Nayak GN (2009) Distribution of sediment parameters and depositional environment of mudflats of Mandovi estuary, Goa, India. J Coastal Res 25(2):273–284

    Article  Google Scholar 

  • Folk RL (1968) Petrology of Sedimentary rocks. Hemphills, Austin, p 177

    Google Scholar 

  • Gaudette HE, Flight WR, Toner L, Folger DW (1974) An inexpensive titration method for the determination of organic carbon in recent sediments. J Sediment Petrol 44:249–253

    Google Scholar 

  • Gazetteer of India, Maharashtra State Gazetteers, Thane District (Revised Edition) (1982) Bombay, Gazetteers Department, Government of Maharashtra

  • Ghayaza M, Le Forestier L, Muller F, Tournassat C, Beny J-M (2011) Pb(II) and Zn(II) adsorption onto Na- and Ca-montmorillonites in acetic acid/acetate medium: experimental approach and geochemical modeling. J Colloid Interface Sci. doi:10.1016/j.jcis.2011.05.028, 31p

    Google Scholar 

  • Haris H, Aris AZ (2012) The geoaccumulation index and enrichment factor of mercury in mangrove sediment of Port Klang, Selangor, Malaysia. Arab J Geosci. doi:10.1007/s12517-012-0674-7

    Google Scholar 

  • Huaiyang Z, Xiaotong P, Jianming P (2004) Geochemical characteristics and sources of some chemical components in sediments of Zhujiang (Pearl) river estuary. Chinese J Oceanol Limnol 22(1):34–43

    Article  Google Scholar 

  • Jonathan MP, Sarkar SK, Roy PD, Alam Md A, Chatterjee M, Bhattacharya BD, Bhattacharya A, Satpathy KK (2010) Acid leachable trace metals in sediment cores from Sunderban mangrove wetland, India: an approach towards regular monitoring. Ecotoxicology 19:405–418. doi:10.1007/s10646-009-0426-y

    Article  Google Scholar 

  • Jung H-S, Yun S-T, Choi B-Y, H-Mi K, Jung M, Kim S-O, K-Ho K (2010) Geochemical studies on the contamination and dispersion of trace metals in intertidal sediments around a military air weapons shooting range. J Soil Sediment 10:1142–1158. doi:10.1007/s11368-010-0248-9

    Article  Google Scholar 

  • Kljaković-Gašpić Z, Bogner D, Ujević I (2009) Trace metals (Cd, Pb, Cu, Zn and Ni) in sediment of the submarine pit Dragon ear (Soline Bay, Rogoznica, Croatia). Environ Geol 58:751–760. doi:10.1007/s00254-008-1549-9

    Article  Google Scholar 

  • Koretsky CM, Haveman M, Beuving L, Cuellar A, Shattuck T, Wagner M (2007) Spatial variation of redox and trace metal geochemistry in a minerotrophic fen. Biogeochemistry 86:33–62. doi:10.1007/s10533-077-9143-x

    Article  Google Scholar 

  • Koschinsky A (2001) Heavy metal distributions in Peru basin surface sediments in relation to historic, present and disturbed redox environments. Deep Sea Res Part II: Top Stud Oceanogr 48(17–18):3757–3777

    Article  Google Scholar 

  • Kumar SP, Edward JKP (2009) Assessment of metal concentration in the sediment cores of Manakudy estuary, south west coast of India. Indian J Mar Sci 38(2):235–248

    Google Scholar 

  • Matini L, Moutou JM, Ongoka PR, Tathy JP (2011) Clay mineralogy and vertical distribution of lead, zinc and copper in a soil profile in the vicinity of an abandoned treatment plant. Res J Environ Earth Sci 3(2):114–123

    Google Scholar 

  • Mukherjee D, Mukherjee A, Kumar B (2009) Chemical fractionation of metals in freshly deposited marine estuarine sediments of sundarban ecosystem, India. Environ Geol 58:1757–1767

    Article  Google Scholar 

  • Müller G (1969) Index of geoaccumulation in the sediments of the Rhine River. Geojournal 2:108–118

    Google Scholar 

  • Nobi EP, Dilipan E, Thangaradjou T, Sivakumar K, Kannan L (2010) Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman islands, India. Estuar Coast Shelf Sci 87:253–264

    Article  Google Scholar 

  • O’Reilly WSB, Bubb JM, Lester JN (1995) The significance of sediment metal concentrations in two eroding Essex salt marshes. Mar Pollut Bull 30(3):190–199

    Article  Google Scholar 

  • Ohmsen GS, Chenhall BE, Jones BG (1995) Trace metal distributions in two saltmarsh substrates, Illawarra region, New South Wales, Australia. Wetlands (Australia) 14:19–31

    Google Scholar 

  • Padmalal D, Seralathan P (1995) Geochemistry of Fe and Mn in surficial sediments of a tropical river and estuary, India—a granulometric approach. Environ Geol 25:270–276

    Article  Google Scholar 

  • Pejrup M (1988) The triangular diagram for classification of estuarine sediments: a new approach. In: de Boer PL, Van Gelder A, Nios SD (Eds) Tide influenced sedimentary environments and facies. Reidel, Dordrecht, pp. 289-300

  • Rajkumar K, Ramanathan AL, Behera PN, Chidambaram S (2012) Preliminary studies on the characterization of clay minerals in the Sundarban mangrove core sediments, West Bengal, India. Arab J Geosci. doi:10.1007/s12517-012-0787-z

    Google Scholar 

  • Rastogi BK, Mandal P, Kumar N (1997) Seismicity around Dhamni Dam, Maharashtra, India. Pure Appl Geophys 150:493–509

    Article  Google Scholar 

  • Rimmer SM (2004) Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin, USA. Chem Geol 206:373–391

    Article  Google Scholar 

  • Roussiez V, Ludwig W, Monaco A, Probst J-L, Bouloubassi I, Buscail R, Saragoni G (2006) Sources and sinks of sediment-bound contaminants in the Gulf of Lions (NW Mediterranean Sea): a multi-tracer approach. Cont Shelf Res 26:1843–1857

    Article  Google Scholar 

  • Ruiz JM, Saiz-Salinas JI (2000) Extreme variation in the concentration of trace metals in sediments and bivalves from the Bilbao estuary (Spain) caused by the 1989–1990 drought. Mar Environ Res 49:307–317

    Article  Google Scholar 

  • Ruiz-Fernández AC, Hillaire-Marcel C, Páez-Osuna F, Ghaleb B, Caballero M (2007) 210Pb chronology and trace metal geochemistry at Los Tuxtlas, Mexico, as evidenced by a sedimentary record from the Lago Verde Crater Lake. Quat Res 67:181–192

    Article  Google Scholar 

  • Ruiz-Fernández AC, Frignani M, Hillaire-Marcel C, Ghaleb B, Arvizu MD, Raygoza-Viera JR, Páez-Osuna F (2009) Trace metals (Cd, Cu, Hg and Pb) accumulation recorded in the intertidal mudflat sediments of three coastal lagoons in the Gulf of California, Mexico. Estuar Coast 32:551–564. doi:10.1007/s12237-009-9150-3

    Article  Google Scholar 

  • Sano T, Fujii T, Deshmukh SS, Fukuoka T, Aramaki S (2001) Differentiation processes of Deccan Trap basalts: contribution from geochemistry and experimental petrology. J Petrol 42(12):2175–2195

    Article  Google Scholar 

  • Sen G (2001) Generation of Deccan Trap magmas. P Indian AS-Earth 110(4):409–431

    Google Scholar 

  • Shankar MNR, Mohan G (2006) Assessment of the groundwater potential and quality in Bhatsa and Kalu river basins of Thane district, western Deccan volcanic province of India. Environ Geol 49:990–998. doi:10.1007/s00254-005-0137-5

    Article  Google Scholar 

  • Shi Q, Leipe T, Rueckert P, Di Z, Harff J (2010) Geochemical sources, deposition and enrichment of heavy metals in short sediment cores from the Pearl River estuary, Southern China. J Mar Syst 82:S28–S42

    Article  Google Scholar 

  • Singh KT, Nayak GN (2009) Sedimentary and geochemical signatures of depositional environment of sediments in mudflats from a microtidal Kalinadi Estuary, Central West coast of India. J Coastal Res 25(3):641–650

    Article  Google Scholar 

  • Siraswar R, Nayak GN (2011) Mudflats in lower middle estuary as a favorable location for concentration of metals, west coast of India. Indian J Geo Mar Sci 40(3):372–385

    Google Scholar 

  • Skowronek F, Sagemann J, Stenzel F, Schulz HD (1994) Evolution of heavy-metal profiles in river Weser estuary sediments, Germany. Environ Geol 24:223–232

    Article  Google Scholar 

  • Sondi I, Lojen S, Juračić M, Prohić E (2008) Mechanisms of land–sea interactions—the distribution of metals and sedimentary organic matter in sediments of a river-dominated Mediterranean karstic estuary. Estuar Coast Shelf Sci 80:12–20

    Article  Google Scholar 

  • Soto-Jiménez MF, Páez-Osuna F (2008) Diagenetic processes on metals in hypersaline mudflat sediments from a subtropical saltmarsh (SE Gulf of California): postdepositional mobility and geochemical fractions. Appl Geochem 23:1202–1217

    Article  Google Scholar 

  • Spencer KL (2002) Spatial variability of metals in the inter-tidal sediments of the Medway Estuary, Kent, UK. Mar Pollut Bull 44:933–944

    Article  Google Scholar 

  • StatSoft (1999) Statistica computer program, version 5.5. StatSoft, Tulsa, OK

  • Sullivan P, Taylor KG (2003) Sediment and pore water geochemistry in a metal contaminated estuary, Dulas Bay, Anglesey. Environ Geochem Health 25:115–122

    Article  Google Scholar 

  • Sundararajan M, Natesn U (2011) Environmental geochemistry of core sediments from Serthalaikkadu creek, East coast of India. Env Earth Sci 62:493–506

    Article  Google Scholar 

  • Swamy GN (1994) Training programme in Modeling and Monitoring of Coastal Marine Pollution (MAMCOMP), November 21–Dec 16, Lecture notes comp. by: Sinha P C. pp 591-593

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851

    Article  Google Scholar 

  • Tribovillard N, Algeo T, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32

    Article  Google Scholar 

  • Vega FA, Covelo EF, Andrade ML (2006) Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics. J Colloid Interface Sci 298:582–592

    Article  Google Scholar 

  • Venkatramanan S, Ramkumar T, Anithamary I, Vasudevan S (2012) Heavy metal distribution in surface sediments of the Tirumalairajan River estuary and the surrounding coastal area, east coast of India. Arab J Geosci. doi:10.1007/s12517-012-0734-z

    Google Scholar 

  • Venkatramanan S, Ramkumar T, Anithamary I (2013) Distribution of grain size, clay mineralogy and organic matter of surface sediments from Tirumalairajanar Estuary, Tamilnadu, east coast of India. Arab J Geosci 6:1371–1380

    Article  Google Scholar 

  • Wang G-P, Zhai Z-L (2008) Geochemical data as indicators of environmental change and human impact in sediments derived from downstream marshes of an ephemeral river, Northeast China. Environ Geol 53:1261–1270. doi:10.1007/s00254-007-0714-x

    Article  Google Scholar 

  • Wensink H (1973) Newer paleomagnetic results of the Deccan Traps, India. Tectonophysics 17:41–59

    Article  Google Scholar 

  • Williams TP, Bubb JM, Lester JN (1994) Metal accumulation within salt marsh environments: a review. Mar Pollut Bull 28(5):277–290

    Article  Google Scholar 

  • Zhang C, Wang L, Li G, Dong S, Yang J, Wang X (2002) Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China. Appl Geochem 17:59–68

    Article  Google Scholar 

  • Zhang W, Yu L, Lu M, Hutchinson SM, Feng H (2007) Magnetic approach to normalizing heavy metal concentrations for particle size effects in intertidal sediments in the Yangtze Estuary, China. Environ Pollut 147:238–244

    Article  Google Scholar 

  • Zwolsman JJG, Berger GW, van Eck GTM (1993) Sediment accumulation rates, historical input, postdepositional mobility and retention of major elements and trace metals in salt marsh sediments of the Scheldt estuary, SW Netherlands. Mar Chem 44:73–94

    Article  Google Scholar 

  • Zwolsman JJG, van Eck GTM, Burger G (1996) Spatial and temporal distribution of trace metals in sediments from the Scheldt estuary, south-west Netherlands. Estuar Coast Shelf Sci 43:55–79

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (Samida .P. Volvoikar) wish to thank the University Grants Commission for granting fellowship under the “Research Fellowships in Sciences for Meritorious Students” scheme. Our sincere thanks go to the India Meteorological Department for supplying the monsoon data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Nayak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volvoikar, S.P., Nayak, G.N. Factors controlling the distribution of metals in intertidal mudflat sediments of Vaitarna estuary, North Maharashtra coast, India. Arab J Geosci 7, 5221–5237 (2014). https://doi.org/10.1007/s12517-013-1162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-1162-4

Keywords

Navigation