Skip to main content

Advertisement

Log in

Early Aptian oceanic anoxic event (OAE 1a) in Northeastern Arabian Plate setting: an example from Dariyan Formation in Zagros fold–trust belt, SE Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Dariyan Formation (southwestern Iran) records the characteristic features of an oceanic anoxic event with organic- and radiolarian-rich hemipelagic intervals. A biostratigraphic study based on benthic and planktonic foraminifers provides an early Aptian age for the organic-rich succession and an Aptian age for the entire Dariyan Formation in this area. In this study, we report the first stable carbon isotope curve for the Dariyan Formation which is characterized by a pronounced negative spike (reaching −2 ‰) at the base of the section followed by a subsequent positive excursion (4 ‰) and a plateau with values fluctuating around 3 ‰. The integration of the δ13C record with the previously published litho- and biostratigraphy provides the characteristic features of the oceanic anoxic events (OAE) 1a interval. This detailed curve improved the stratigraphic resolution in this area and allowed the establishment of a temporal framework which showed good correlations with other OAE 1a sections worldwide. High production of organic matter and abundance of radiolarians and planktonic foraminifers suggest high-nutrient fluxes and meso- to eutrophic conditions at the time of deposition of the organic-rich interval of the Dariyan Formation. This is in agreement with enhanced greenhouse conditions. The facies distribution (from shallow to deep water environments) and the paleogeography of Arabian Plate during the early Aptian suggest that increasing continental runoff was a primary trigger of high trophic level conditions. Redox conditions, estimated from manganese (Mn) behavior, indicate dysoxic to anoxic conditions within the basin during OAE 1a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alavi M (2004) Regional stratigraphy of the Zagros fold–thrust belt of Iran and its proforeland evolution. Am J Sci 304(1):1–20

    Article  Google Scholar 

  • Alavi M (2007) Structures of the Zagros fold–thrust belt in Iran. Am J Sci 307(9):1064–1095

    Article  Google Scholar 

  • Alexandre JT, van Gilst RI, Rodriguez-Lopez JP, de Boer PL (2011) The sedimentary expression of oceanic anoxic event 1b in the North Atlantic. Sedimentology 58(5):1217–1246

    Article  Google Scholar 

  • Ando A, Kaiho K, Kawahata H, Kakegawa T (2008) Timing and magnitude of early Aptian extreme warming: unraveling primary δ18O variation in indurated pelagic carbonates at Deep Sea Drilling Project Site 463, central Pacific Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 260(3):463–476

    Article  Google Scholar 

  • Arthur MA, Jenkyns HC, Brumsack HJ, Schlanger SO (1990) Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences. In: Ginsburg RN, Beaudoin B (eds.) Cretaceous resources, events and rhythms: background and plans for research. Kluwer, Dordrecht. vol. 304, pp. 75–119

  • Baumgartner PO (2013) Mesozoic radiolarites—accumulation as a function of sea surface fertility on Tethyan margins and in ocean basins. Sedimentology 60(1):292–318

    Article  Google Scholar 

  • Berner RA, Kothavala Z (2001) Geocarb III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301(2):182–204

    Article  Google Scholar 

  • Bice KL, Norris RD (2002) Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian–Turonian). Paleoceanography 17(4):1070

    Article  Google Scholar 

  • Bodin S, Godet A, Föllmi KB, Vermeulen J, Arnaud H, Strasser A, Fiet N, Adatte T (2006) The late Hauterivian Faraoni oceanic anoxic event in the western Tethys: evidence from phosphorus burial rates. Palaeogeogr Palaeoclimatol Palaeoecol 245–264

  • Bottini C, Mutterlose J (2012) Integrated stratigraphy of Early Aptian black shales in the Boreal Realm: calcareous nannofossil and stable isotope evidence for global and regional processes. Newsletters on Stratigraphy 45(2):115–137

    Article  Google Scholar 

  • Bralower T, Fullagar P, Paull C, Dwyer G, Leckie R (1997) Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections. Geol Soc Am Bull 109(11):1421–1442

    Article  Google Scholar 

  • Bralower TJ, CoBabe E, Clement B, Sliter WV, Osburn CL, Longoria J (1999) The record of global change in mid-Cretaceous (Barremian–Albian) sections from the Sierra Madre, northeastern Mexico. J Foraminifer Res 29(4):418–437

    Google Scholar 

  • Broecker WS, Peng TH (1982) Tracers in the sea. Lamont-Doherty Geol. Obs, Palisades, NY

    Google Scholar 

  • Browning EL, Watkins DK (2008) Elevated primary productivity of calcareous nannoplankton associated with ocean anoxic event 1b during the Aptian/Albian transition (Early Cretaceous). Paleoceanography 23(2):PA2213

    Article  Google Scholar 

  • Coffin MF, Pringle M, Duncan R, Gladczenko T, Storey M, Müller R, Gahagan L (2002) Kerguelen hotspot magma output since 130 Ma. J Petrol 43(7):1121–1137

    Article  Google Scholar 

  • Davies RB, Casey DM, Horbury AD, Sharland PR, Simmons MD (2002) Early to mid-Cretaceous mixed carbonate-siliciclastic shelfal systems: examples, issues and models from the Arabian plate. GeoArabia 7(3):541–598

    Google Scholar 

  • De Gea G, Castro J, Aguado R, Ruiz-Ortiz P (2003) Lower Aptian carbon isotope stratigraphy from a distal carbonate shelf setting: the Cau section, Prebetic zone, SE Spain. Palaeogeogr Palaeoclimatol Palaeoecol 200(1):207–219

    Article  Google Scholar 

  • Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, Cadet JP, Crasquin S, Sandulescu M (2000) Peri-Tethys Palaeogeographical atlas. Commission for the Geological Map of the World, Paris, pp. 1–269

  • Dercourt J, Ricou LE, Vrielynck B (1993) Atlas Tethys, Paleoenvironmental Maps. Gauthier-Villars, Paris, 307 pp, 314 maps, 301 pl

  • Elkhazri A, Abdallah H, Razgallah S, Moullade M, Kuhnt W (2012) Carbon-isotope and microfaunal stratigraphy bounding the Lower Aptian oceanic anoxic event 1a in northeastern Tunisia. Cretac Res 39:133–148

    Article  Google Scholar 

  • Erba E (1994) Nannofossils and superplumes: the Early Aptian “nannoconid crisis”. Paleoceanography 9(3):483–501

    Article  Google Scholar 

  • Erba E (2004) Calcareous nannofossils and Mesozoic oceanic anoxic events. Mar Micropaleontol 52(1):85–106

    Article  Google Scholar 

  • Erba E, Channell JET, Claps M, Jones C, Larson R, Opdyke B, Silva IP, Riva A, Salvini G, Torricelli S (1999) Integrated stratigraphy of the Cismon Apticore (southern Alps, Italy); a “reference section” for the Barremian–Aptian interval at low latitudes. J Foraminifer Res 29(4):371–391

    Google Scholar 

  • Erba E, Bottini C, Weissert HJ, Keller C (2010) Calcareous nannoplankton response to surface–water acidification around oceanic anoxic event 1a. Science 329(5990):428–432

    Article  Google Scholar 

  • Erbacher J, Huber BT, Norris RD, Markey M (2001) Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period. Nature 409(6818):325–327

    Article  Google Scholar 

  • Erbacher J, Thurow J, Littke R (1996) Evolution patterns of Radiolaria and organic matter variations: a new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology 24(6):499–502

    Article  Google Scholar 

  • Föllmi KB, Weissert H, Bisping M, Funk HP (1994) Phosphogenesis, carbon-isotope tratigraphy, and carbonate platform evolution along the Lower Cretaceous northern Tethyan margin. Geol Soc Am Bull 106:729–746

    Article  Google Scholar 

  • Föllmi KB, Godet A, Bodin S, Linder P (2006) Interactions between environmental change and shallow water carbonate buildup along the northern Tethyan margin and their impact on the Early Cretaceous carbon isotope record. Paleoceanography 21(4):1–16

    Article  Google Scholar 

  • Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the Phanerozoic, vol. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Friedrich O, Nishi H, Pross J, Schmiedl G, Hemleben C (2005) Millennial-to centennial-scale interruptions of the oceanic anoxic event 1b (Early Albian, mid-Cretaceous) inferred from benthic foraminiferal repopulation events. Palaios 20(1):64–77

    Article  Google Scholar 

  • Gale AS, Smith AB, Monks NEA, Young JA, Howard A, Wray DS, Huggett JM (2000) Marine biodiversity through the Late Cenomaniane Early Turonian: palaeoceanographic controls and sequence stratigraphic biases. J Geol Soc Lond 157:745–757

    Article  Google Scholar 

  • Graziano R (2013) Sedimentology, biostratigraphy and event stratigraphy of the Early Aptian oceanic anoxic event (OAE1A) in the Apulia Carbonate Platform Margin e Ionian Basin-System (Gargano Promontory, southern Italy), vol 39. Chapman and Hall, London, pp 78–111

    Google Scholar 

  • Gustafsson M, Holbourn A, Kuhnt W (2003) Changes in Northeast Atlantic temperature and carbon flux during the Cenomanian/Turonian paleoceanographic event: the Goban Spur stable isotope record. Palaeogeogr Palaeoclimatol Palaeoecol 201(1):51–66

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235(4793):1156–1167

    Article  Google Scholar 

  • Heldt M, Bachmann M, Lehmann J (2008) Microfacies, biostratigraphy, and geochemistry of the hemipelagic Barremian–Aptian in north-central Tunisia: influence of the OAE 1a on the southern Tethys margin. Palaeogeogr Palaeoclimatol Palaeoecol 261(3):246–260

    Article  Google Scholar 

  • Herrle JO, Pross J, Friedrich O, Kossler P, Hemleben C (2003) Forcing mechanism for mid-Cretaceous black shale formation: evidence from the upper Aptian and lower Albian of the Vocontian Basin (SE France). Palaeogeogr Palaeoclimatol Palaeoecol 190:399–426

    Article  Google Scholar 

  • Hilbrecht H, Frieg C, Tröger KA, Voigt S, Voigt T (1996) Shallow water facies during the Cenomaniane–Turonian anoxic event: bio-events, isotopes, and sea-level in southern Germany. Cretac Res 17:229–253

    Article  Google Scholar 

  • Hillgartner H, van Buchem FSP, Gaumet F, Razin P, Pittet B, Grotsch J, Droste H (2003) The Barremian/Aptian evolution of the eastern Arabian carbonate platform margin (northern Oman): sedimentology, sequence stratigraphy, and environmental change. J Sed Res 73:756–773

    Article  Google Scholar 

  • Hu X, Zhao K, Yilmaz IO, Li Y (2012) Stratigraphic transition and palaeoenvironmental changes from the Aptian oceanic anoxic event 1a (OAE1a) to the oceanic red bed 1 (ORB1) in the Yenicesihlar section, central Turkey. Cretac Res 38:40–51

    Article  Google Scholar 

  • Huber BT, Norris RD, MacLeod KG (2002) Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30(2):123–126

    Article  Google Scholar 

  • Huck S, Heimhofer U, Rameil N, Bodin S, Immenhauser A (2011) Strontium and carbon-isotope chronostratigraphy of Barremian–Aptian shoal-water carbonates: Northern Tethyan platform drowning predates OAE 1a. Earth Planet Sci Lett 304(3):547–558

    Article  Google Scholar 

  • Huck S, Rameil N, Korbar T, Heimhofer U, Wieczorek TD, Immenhauser A (2010) Latitudinally different responses of Tethyan shoal–water carbonate systems to the Early Aptian oceanic anoxic event (OAE 1a). Sedimentology 57(7):1585–1614

    Article  Google Scholar 

  • Immenhauser A, Hillgartner H, Van Bentum E (2005) Microbial-foraminiferal episodes in the Early Aptian of the southern Tethyan margin: ecological significance and possible relation to oceanic anoxic event 1a. Sedimentology 52(1):77–99

    Article  Google Scholar 

  • Jahren AH, Arens NC, Sarmiento G, Guerrero J, Amundson R (2001) Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology 29(2):159–162

    Article  Google Scholar 

  • James G, Wynd J (1965) Stratigraphic nomenclature of Iranian oil consortium agreement area. AAPG Bull 49(12):2182–2245

    Google Scholar 

  • Jarvis I, Mabrouk A, Moody RTJ, de Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeogr Palaeoclimatol Palaeoecol 188:215–248

    Article  Google Scholar 

  • Jenkyns HC (1995) Carbon-isotope stratigraphy and paleoceanographic significance of the Lower Cretaceous shallow-water carbonates of Resolution Guyot, Mid-Pacific Mountains. Proc of the Ocean Drilling Program, Sci Results 134:99–104

    Google Scholar 

  • Jenkyns HC (2003) Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Philos Trans R Soc London, Ser A 361(1810):1885–1916

    Article  Google Scholar 

  • Jenkyns HC (2010) Geochemistry of oceanic anoxic events. Geochem Geophys Geosyst 11(3):Q03004

    Article  Google Scholar 

  • Jones CE, Jenkyns HC (2001) Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am J Sci 301(2):112–149

    Article  Google Scholar 

  • Kuhn O, Weissert H, Föllmi KB, Hennig S (2005) Altered carbon cycling and trace-metal enrichment during the late Valanginian and early Hauterivian. Eclogae Geol Helv 98(3):333–344

    Article  Google Scholar 

  • Kuhnt W, Holbourn A, Moullade M (2011) Transient global cooling at the onset of early Aptian oceanic anoxic event (OAE) 1a. Geology 39(4):323–326

    Article  Google Scholar 

  • Kump LR, Arthur MA (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161:181–198

    Article  Google Scholar 

  • Larson RL, Erba E (1999) Onset of the mid-Cretaceous greenhouse in the Barremian–Aptian: igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography 14(6):663–678

    Article  Google Scholar 

  • Leckie RM, Bralower TJ, Cashman R (2002) Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17(3):1041

    Article  Google Scholar 

  • Li YX, Bralower TJ, Montañez IP, Osleger DA, Arthur MA, Bice DM, Herbert TD, Erba E, Premoli Silva I (2008) Toward an orbital chronology for the early Aptian oceanic anoxic event (OAE1a, 120 Ma). Earth Planet Sci Lett 271(1):88–100

    Article  Google Scholar 

  • Mangini A, Jung M, Laukenmann S (2001) What do we learn from peaks of uranium and of manganese in deep sea sediments? Mar Geol 177(1):63–78

    Article  Google Scholar 

  • Malkoc M, Mutterlose J, Pauly S (2010) Timing of the Early Aptian δ13C excursion in the Boreal Realm. Newsletters on Stratigraphy 43:251–273

    Article  Google Scholar 

  • McArthur J, Howarth R, Bailey T (2001) Strontium isotope stratigraphy: Lowess version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look up table for deriving numerical age. J Geol 109(2):155–170

    Article  Google Scholar 

  • Mehay S, Keller CE, Bernasconi SM, Weissert H, Erba E, Bottini C, Hochuli PA (2009) A volcanic CO2 pulse triggered the Cretaceous oceanic anoxic event 1a and a biocalcification crisis. Geology 37(9):819–822

    Article  Google Scholar 

  • Menegatti AP, Weissert H, Brown RS, Tyson RV, Farrimond P, Strasser A, Caron M (1998) High-resolution δ13C stratigraphy through the early Aptian “Livello Selli” of the Alpine Tethys. Paleoceanography 13(5):530–545

    Article  Google Scholar 

  • Michalík J, Soták J, Lintnerová O, Halásová E, Bąk M, Skupien P, Boorová D (2008) The stratigraphic and paleoenvironmental setting of Aptian OAE black shale deposits in the Pieniny Klippen Belt, Slovak Western Carpathians. Cretac Res 29(5):871–892

    Article  Google Scholar 

  • Millán M, Weissert H, Fernández-Mendiola P, García-Mondejar J (2009) Impact of Early Aptian carbon cycle perturbations on evolution of a marine shelf system in the Basque-Cantabrian Basin (Aralar, N Spain). Earth Planet Sci Lett 287(3):392–401

    Article  Google Scholar 

  • Millán M, Weissert KJ, Owen H, Fernandez-Mendiola PA, Garcia-Mondejar J (2011) The Madotz Urgonian platform (Aralar, northern Spain): paleoecological changes in response to Early Aptian global environmental events. Palaeogeography, Palaeoclimatology, Palaeoecology 312:167–180

    Article  Google Scholar 

  • Moosavizadeh MA, Mahboubi A, Moussavi-Harami R, Kavoosi MA (2012) Lithostratigraphy and sequence stratigraphy revision of the Dariyan Formation in Kuh-e-Sefid section, North Shiraz. 16th Conference of Geology Society of Iran, Shiraz University, Shiraz, Iran

  • Mottie H (1993) Stratigraphy of Zagros. Geological Survey of Iran, Persian, p 536

    Google Scholar 

  • Mutti M, Hallock P (2003) Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints. Int J Earth Sci 92:465–475

    Article  Google Scholar 

  • Najarro M, Rosales I, Moreno-Bedmar JA, de Gea GA, Barrón E, Delanoy G (2010) High-resolution chemo-and biostratigraphic records of the Early Aptian oceanic anoxic event in Cantabria (N Spain): palaeoceanographic and palaeoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 299(1–2):137–158

    Google Scholar 

  • Navabpour P, Angelier J, Barrier E (2010) Mesozoic extensional brittle tectonics of the Arabian passive margin, inverted in the Zagros collision (Iran, interior Fars). In: Leturmy P, Robin C (eds) Tectonic and Stratigraphy Evolution of Zagros and Makran during the Mesozoic–Cenozoic, vol 330. Geological Society, London, pp 65–96

    Google Scholar 

  • Nelson CS, Smith AM (1996) Stable oxygen and carbon isotope compositional fields for skeletal and diagenetic components in New Zealand Cenozoic nontropical carbonate sediments and limestones: a synthesis and review. N Z J Geol Geophys 39(1):93–107

    Article  Google Scholar 

  • Neuweiler F, Reitner J (1992) Karbonatba ¨nke mit Lithocodium aggregatum Elliott/Bacinella irregularis Radoicic. Pala ¨obathymetrie, Pala ¨oo ¨kologie und stratigraphisches A¨ quivalent zu thrombolitischen Mud Mounds. Berl Geowiss Abh 3:273–293

  • Pittet B, Van Buchem FSP, Hillgartner H, Razin P, Grotsch J, Droste H (2002) Ecological succession, paleoenvironmental change, and depositional sequences of Barremian–Aptian shallow-water carbonates in northern Oman. Sedimentology 49:555–581

    Article  Google Scholar 

  • Premoli Silva I, Sliter WV (1999) Cretaceous paleoceanography: evidence from planktonic foraminiferal evolution. Special Papers-Geological Society of America 332:301–328

    Google Scholar 

  • Rameil N, Immenhauser A, Warrlich G, Hillgärtner H, Droste H (2010) Morphological patterns of Aptian Lithocodium–Bacinella geobodies: relation to environment and scale. Sedimentology 57:883–911

    Article  Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47:179–214

    Article  Google Scholar 

  • Robinson SA, Williams T (2004) Fluctuations in biosiliceous production and the generation of Early Cretaceous oceanic anoxic events in the Pacific Ocean (Shatsky Rise, Ocean Drilling Program Leg 198). Paleoceanography 19:1–19

    Google Scholar 

  • Robinson TA, Andrews JE, Hesselbo SP, Radley JD, Dennis PF, Harding IC, Allen P (2002) Atmospheric p CO2 and depositional environment from stable-isotope geochemistry of calcrete nodules (Barremian, Lower Cretaceous, Wealden Beds, England). J Geol Soc 159(2):215–224

    Article  Google Scholar 

  • Schlager W (1981) The paradox of drowned reefs and carbonate platforms. Geol Soc Am Bull 92(4):197–211

    Article  Google Scholar 

  • Schlanger S, Jenkyns H (1976) Cretaceous oceanic anoxic events: causes and consequences. Geol Mijnb 55(3–4):179–184

    Google Scholar 

  • Schroeder R, Van Buchem F, Cherchi A, Baghbani D, Vincent B, Immenhauser A, Granier B (2010) Revised orbitolinid biostratigraphic zonation for the Barremian–Aptian of the eastern Arabian Plate and implications for regional stratigraphic correlations. GeoArabia Special Publication 4:49–96

    Google Scholar 

  • Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmon MD (2001) Arabian Plate sequence stratigraphy. GeoArabia Special Publication 2:371

    Google Scholar 

  • Sherkati S, Letouzey J (2004) Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Mar Pet Geol 21(5):535–554

    Article  Google Scholar 

  • Skelton PW, Gili E (2012) Rudists and carbonate platforms in the Aptian: a case study on biotic interactions with ocean chemistry and climate. Sedimentology 59:81–117

    Article  Google Scholar 

  • Skelton PW, Spicer RA, Kelley SP, Gilmour I (2003) The cretaceous world. Cambridge University Press and The Open University, Cambridge

    Google Scholar 

  • Stein M, Föllmi KB, Westermann S, Godet A, Adatte T, Matera V, Fleitmann D, Berner Z (2011) Progressive palaeoenvironmental change during the Late Barremian–Early Aptian as prelude to oceanic anoxic event 1a: evidence from the Gorgo a Cerbara section (Umbria-Marche basin, central Italy). Palaeogeogr Palaeoclimatol Palaeoecol 302(3):396–406

    Article  Google Scholar 

  • Takashima R, Sano S, Iba Y, Nishi H (2007) The first Pacific record of the Late Aptian warming event. J Geol Soc 164(2):333–339

    Article  Google Scholar 

  • Tarduno J, Mayer H, Winterer E, Sliter W, Kroenke L, Mahoney J, Leckie M, Musgrave R, Storey M (1991) Rapid formation of Ontong Java Plateau by Aptian mantle plume volcanism. Science 254(5030):399–403

    Article  Google Scholar 

  • Tejada MLG, Suzuki K, Kuroda J, Coccioni R, Mahoney JJ, Ohkouchi N, Sakamoto T, Tatsumi Y (2009) Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event. Geology 37(9):855–858

    Article  Google Scholar 

  • van de Schootbrugge B, Kuhn O, Adatte T, Steinmann P, Föllmi K (2003) Decoupling of P- and Corg-burial following Early Cretaceous (Valanginiane–Hauterivian) platform drowning along the NW Tethyan margin. Palaeogeogr Palaeoclimatol Palaeoecol 199:315–331

    Article  Google Scholar 

  • van Buchem F, Pittet B, Hillgartner H, Grotsch J, Al Mansouri AI, Billing IM, Droste HJ, Oterdoom WH (2002) High-resolution sequence stratigraphic architecture of Barremian/Aptian Carbonate Systems in Northern Oman and the United Arab Emirates (Kharaib and Shuaiba formations). GeoArabia 7:461–500

    Google Scholar 

  • van Buchem FSP, Baghbani D, Bulot LG, Caron M, Gaumet F, Hosseini A, Keyvani F, Schroeder R, Swennen R, Vedrenne V (2010) Barremian–Lower Albian sequence stratigraphy of southwest Iran (Gadvan, Dariyan and Kazhdumi Formations) and its comparison with Oman. Qatar and the United Arab Emirates, GeoArabia Special Publication 4:503–548

    Google Scholar 

  • Vaziri-Moghaddam H, Kimiagari M, Taheri A (2006) Depositional environment and sequence stratigraphy of the Oligo–Miocene Asmari Formation in SW Iran. Facies 52:41–51

    Google Scholar 

  • Wagner T, Burrows J, Deutschmann T, Dix B, Von Friedeburg C, Frieß U, Hendrick F, Heue K-P, Irie H, Iwabuchi H (2007) Comparison of box-air-mass-factors and radiances for Multiple-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) geometries calculated from different UV/visible radiative transfer models. Atmospheric Chemistry and Physics 7(7):1809–1833

    Article  Google Scholar 

  • Wallmann K (2001) Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochimica et Cosmochimica Acta 65(18):3005–3025

    Article  Google Scholar 

  • Weissert H, Erba E (2004) Volcanism, CO2 and palaeoclimate: a Late Jurassic–Early Cretaceous carbon and oxygen isotope record. J Geol Soc 161(4):695–702

    Article  Google Scholar 

  • Weissert H, Lini A, Föllmi KB, Kuhn O (1998) Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link? Palaeogeography, Palaeoclimatology, Palaeoecology 137(3):189–203

    Article  Google Scholar 

  • Westermann S, Föllmi KB, Adatte T, Matera V, Schnyder J, Fleitmann D, Fiet N, Ploch I, Duchamp-Alphonse S (2010) he Valanginian δ13 C excursion may not be an expression of a global oceanic anoxic event. Earth Planet Sci Lett 290:118–131

    Article  Google Scholar 

  • Whalen MT, Day J, Eberli GP, Homewood PW (2002) Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: examples from the Late Devonian, Alberta basin, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 181:127–151

    Article  Google Scholar 

  • Wilson PA, Norris RD (2001) Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412(6845):425–429

    Article  Google Scholar 

  • Ziegler MA (2001) Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoarAbia 6:445–504

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Moosavi and Mr. Hoseyni for their help in the field and Mr. Heydari for help in isotope analysis. Also we appreciate Mrs. Rivandi (Ferdowsi University of Mashhad) for her help in identification of benthic and planktonic foraminifers. Dr. Stephane Westermann (Bristol University) is appreciated for revising and editing the text. We also like to thank both reviewers for their constructive comments and suggestions on manuscript. Financial support from Ferdowsi University of Mashhad, Iran, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Moosavizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moosavizadeh, M.A., Mahboubi, A., Moussavi-Harami, R. et al. Early Aptian oceanic anoxic event (OAE 1a) in Northeastern Arabian Plate setting: an example from Dariyan Formation in Zagros fold–trust belt, SE Iran. Arab J Geosci 7, 4745–4756 (2014). https://doi.org/10.1007/s12517-013-1025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-1025-z

Keyword

Navigation