Skip to main content
Log in

Petrography and geochemistry of Silurian Niur sandstones, Derenjal Mountains, East Central Iran: implications for tectonic setting, provenance and weathering

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Petrographical and geochemical studies of Silurian Niur sandstones, Derenjal Mountains, Central Iran, were carried out to infer their provenance and tectonic setting. Modal analysis data of 37 medium sand size and well-sorted samples revealed that most quartz is composed of monocrystalline grains with straight to slightly undulos extinction and about 3 % polycrystalline quartz has inclusions, such as rutile needles. The sandstones are classified as quartzarenite, sublitharenite, and subarkose types based on framework composition and geochemistry. Petrographic studies reveal that these sandstones contain quartz, feldspars, and fragments of sedimentary rocks. The detrital modes of these sandstones indicate that they were derived from recycled orogen and stable cratonic source. Major and trace element contents of them are generally depleted (except SiO2) relative to upper continental crust which is mainly due to the presence of quartz and absence of Al-bearing minerals. Modal composition (e.g., quartz, feldspar, and lithic fragments) and discrimination diagrams based on major elements, trace elements (Ti, La, Th, Sc, and Zr), and also such ratios as La/Sc, Th/Sc, La/Co, and Th/Co, in sandstones suggest a felsic igneous source rock and quartzose polycyclic sedimentary provenance in a passive continental margin setting. Furthermore, high Zr/Sc values in these sandstones are considered as a sign of recycling. We indicated paleo-weathering conditions by modal compositions, the CIA index and Al2O3 + K2O + Na2O% vs. SiO2% bivariate for these sandstones. Based on these results, although recycling is important to increase the maturity of the Niur sandstones, humid climate conditions in the source area have played a decisive role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Aghanabati A (2004) Geology of Iran. Geological Survey of Iran, Tehran (In Persian)

  • Alavi M (1996) Tectonostratigraphic synthesis and structural style of the Alborz mountainous system in Northern Iran. J Geodyn 11:1–33

    Article  Google Scholar 

  • Alsharhan AS, Kendall CGSC (1986) Precambrian to Jurassic rocks of Arabian Gulf and adjacent areas: their facies, depositional setting, and hydrocarbon habitat. Am Assoc Petrol Geol Bull 70:977–1002

    Google Scholar 

  • Armstrong-Altrin JS (2009) Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, Mexico. Revista Mexicana de Ciencias Geológicas 26(3):764–782

    Google Scholar 

  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004) Geochemistry of sandstones from the upper Miocene Kudankulam Formation, Southern India: implications for provenance, weathering, and tectonic setting. J Sediment Res 74(2):285–297

    Google Scholar 

  • Bakkiaraj D, Nagendra R, Nagarajan R, Armstrong-Altrin JS (2010) Geochemistry of sandstones from the Upper Cretaceous Sillakkudi Formation, Cauvery Basin, southern India: implications for provenance. J Geol Soci India 76:453–467

    Article  Google Scholar 

  • Basu A, Young S, Suttner L, James W, Mack G (1975) Re-evaluation of the use of undulatory extinction and crystallinity in detrital quartz for provenance interpretation. J Sediment Petrol 45:873–882

    Google Scholar 

  • Bauluz B, Mayayo MJ, Fernandez-Nieto C, Gonzalez-Lopez JM (2000) Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chem Geol 168:135–150

    Article  Google Scholar 

  • Berberian F, Berberian M (1981) Tectono-plutonic episodes in Iran. In: Gupta HK, Delany FM (eds) Zagros-Hindu Kush-Himalaya Geodynamic Evolution. Geodyn Seri: 3. American Geophysical Union, Washington, DC, pp 5–32

    Chapter  Google Scholar 

  • Berberian M, King GC (1981) Towards the paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91:611–627

    Article  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of gray-wackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Article  Google Scholar 

  • Blatt H, Middleton G, Murray R (1980) Origin of sedimentary rocks. Prentice-Hall, New Jersey

    Google Scholar 

  • Bruton DL, Wright AJ, Hamedi MA (2004) Ordovician trilobites of Iran. Palaeontograph A 271:111–149

    Google Scholar 

  • Caracciolo L, Le Pera E, Muto F, Perri F (2013) Sandstone petrology and mudstone geochemistry of the Peruc-Koryacany Formation (Bohemian Cretaceous Basin, Czech Republic). Int Geol Rev (in press)

  • Chamley H (1990) Sedimentology. Springer, Berlin

    Book  Google Scholar 

  • Cocks LRM, Torsvik TH (2002) Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. J Geol Soci Lond 159:631–644

    Article  Google Scholar 

  • Condie KC (1991) Another look at rare earth elements in shales. Geoch Cosmo Acta 55:2527–2531

    Article  Google Scholar 

  • Crook KAW (1974) Lithostratigraty and geotectonic: The significance of composition variation in flysch arenites (graywakes). In: Dott RH, Shaver RH (eds.) Modern and Ancient Geosynclinal Sedimentation, 19; Soc. Econ. Paleonto Mineral Sp Publ: 304–310

  • Cullers RL (1994) The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian–Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geo Cosmo Acta 58(22):4955–4972

    Article  Google Scholar 

  • Cullers RL (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA. Implications for provenance and metamorphic studies. Lithos 51:181–203

    Article  Google Scholar 

  • Cullers RL (2002) Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, Colorado, USA. Chem Geol 191(4):305–327

    Google Scholar 

  • Cullers RL, Podkovyrov VN (2000) Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia Implications for mineralogical and provenance control, and recycling. Precambrian Res 104(1–2):77–93

    Article  Google Scholar 

  • Cullers RL, Barret T, Carlson R, Robinson B (1987) Rare earth element and mineralogical changes in Holocene soil and stream sediment: a case study in the Wet Mountains, Colorado, USA. Chem Geol 63:275–295

    Article  Google Scholar 

  • Dabbagh ME, Rogers JJ (1983) Depositional environments and tectonic significance of the Wajid sandstone of southern Saudi Arabia. J African Earth Sci 47–57

  • Dickinson WR (1970) Interpreting detrital modes of graywacke and arkose. J Sediment Petrol 40:695–707

    Google Scholar 

  • Dickinson WR (1985) Interpreting provenance relation from detrital modes of sandstones. In: Zuffa GG (ed) Provenance of arenites: NATO ASI Series, C 148. Reidel, Dordrecht, pp 333–363

    Chapter  Google Scholar 

  • Dickinson WR, Suczek CA (1979) Plate tectonics and sandstone com-positions. Bull Am Assoc Petrol Geol 63:21–71

    Google Scholar 

  • Dickinson WR, Beard LS, Brakenridge GR, Erjavec JL, Ferguson RC, Inman KF et al (1983) Provenance of North-American Phanerozoic sandstones in relation to tectonic setting. Bull Am Geol Soci 94:222–235

    Article  Google Scholar 

  • Etemad-Saeed N, Hosseini-Barzi M, Armstrong-Altrin JS (2011) Petrography and geochemistry of clastic sedimentary rocks as evidences for provenance of the Lower Cambrian Lalun Formation, Posht-e-badam block, Central Iran. J African Earth Sci 61:142–159

    Article  Google Scholar 

  • Floyd PA, Leveridge BE (1987) Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbidite sandstones. J Geol Soc Lond 144(4):531–542

    Article  Google Scholar 

  • Floyd PA, Winchester JA, Park RG (1989) Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, North West Scotland. Precambrian Res 45(1–3):203–214

    Google Scholar 

  • Flügel HW, Saleh H (1970) Die paläozoischen Korallenfaunen Ost–Irans. 1. Rugose Korallen der Niur Formation (Silur). J Geol Bundesanstalt 113:267–302

    Google Scholar 

  • Folk RL (1980) Petrology of sedimentary rocks. Hemphill Publishing, Austin, Texas

    Google Scholar 

  • Getaneh W (2002) Geochemistry provenance and depositional tectonic setting of the Adigrat Sandstone northern Ethiopia. J African Earth Sci 35:185–198

    Article  Google Scholar 

  • Ghavidel-Syooki M, Winchester-Seeto T (2004) Chitinozoan biostratigraphy and palaeogeography of Lower Silurian strata (Sarchahan Formation) in the Zagros Basin of southern Iran. In: JR Laurie and BC, Foster (eds.), Palaeontological and micropalaeontological studies in honour of Geoffrey Playford. AAP Memoirs 29: 161–182

  • Ghobadi Pour M, Turvey ST (2009) Revision of some Lower to Middle Ordovician leiostegiid trilobites from Iran and China. AAP Memoires 37:463–480

    Google Scholar 

  • Ghobadi Pour M, Williams M, Vannier J, Meidla T, Popov LE (2006) Ordovician ostracods from east central Iran. Acta Palaeontol Pol 51:551–560

    Google Scholar 

  • Goetze J (1998) Geochemistry and provenance of the Altendorf feldspathic sandstone in the Middle Bunter of the Thuringian basin (Germany). Chem Geol 150:43–61

    Article  Google Scholar 

  • Hairapetian V, Blom H, Miller CG (2008) Silurian thelodonts from the Niur Formation, central Iran. Acta Palaeontol Pol 53:85–95

    Article  Google Scholar 

  • Hairapetian V, Mohibullah M, Tilley LJ, Williams M, Miller CG, Afzal J, Ghobadi Pour M, Hejazi SM (2011) Early Silurian carbonate platform ostracods from Iran: a peri-Gondwanan fauna with strong Laurentian affinities. Gondwana Res 20:645–653

    Article  Google Scholar 

  • Hamedi MA (1995) Lower Palaeozoic sedimentology and stratigraphy of the Kerman region, East-Central Iran. Ph.D. thesis, Department of Geology, University of Wollongong

  • Herron MM (1988) Geochemical classification of terrigenous sands and shales from core or log data. J Sediment Petrol 58:820–829

    Google Scholar 

  • Horton BK, Hassanzadeh J, Stockli DF, Axen GJ, Gillis RJ, Guest B, Amini AH, Fakhari M, Zamanzadeh SM, Grove M (2008) Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: implications for chronostratigraphy and collisional tectonics. Tectonophysics 451:97–122

    Article  Google Scholar 

  • Huntsman-Mapilaa P, Kampunzuc AB, Vinkc B, Ringrosea S (2005) Cryptic indicators of provenance from the geochemistry of the Okavango Delta sediments, Botswana. Sediment Geol 174:123–148

    Article  Google Scholar 

  • Husseini MI (1991) Tectonic and depositional model of the Arabian and adjoining plates during the Silurian–Devonian. Am Assoc Petrol Geol Bull 75:108–120

    Google Scholar 

  • Ingersoll RV, Bullard TF, Ford RL, Grimm JP, Pickle JD, Sares SW (1984) The effect of grain size on detrital modes: a test of the Gazzi–Dickinson point-counting method. J Sediment Petrol 54:103–116

    Google Scholar 

  • Jafarzadeh M, Hosseini-Barzi M (2008) Petrography and geochemistry of Ahwaz Sandstone Member of Asmari Formation, Zagros, Iran: implications on provenance and tectonic setting. Rev Mex Cienc Geol 25(2):247–260

    Google Scholar 

  • James GA, Wynd JG (1965) Stratigraphic nomenclature of Iranian oil consortium agreement area. Am Assoc Petrol Geol Bull 49:2182–2245

    Google Scholar 

  • Jin Z, Li F, Cao J, Wang S, Yu J (2006) Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: Implications for provenance, sedimentary sorting and catchment weathering. Geomorphology 80:147–163

    Article  Google Scholar 

  • Khanehbad M, Moussavi-Harami R, Mahboubi A, Nadjafi M (2012a) Geochemistry of carboniferous shales of the Sardar Formation, East Central Iran: implication for provenance, Paleoclimate and Paleooxygenation conditions at a passive continental margin. Geokhim 50(9):867–880

    Google Scholar 

  • Khanehbad M, Moussavi-Harami R, Mahboubi A, Nadjafi M, Mahmudy Gharaie MH (2012b) Geochemistry of carboniferous sandstones (Sardar Formation), East Central Iran: implication of provenance and tectonic setting. Acta Geol Sin-English Ed 86(5):1200–1210

    Article  Google Scholar 

  • Kroonenberg SB (1994) Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. In: 29th IGC Proceedings Part A: 69–81

  • Lasemi Y (2001) Facies analysis, depositional environments and sequence stratigraphy of the Upper Pre-Cambrian and Paleozoic rocks of Iran, Iran Geological Survey Publications (In Persian)

  • Lüning S, Craig J, Loydell DK, Štorch P, and Fitches B (2000) Lower Silurian “hot shales” in North Africa and Arabia: regional distribution and depositional model. Earth Sci Rev 49:121–200

    Google Scholar 

  • Mader D, Neubauer F (2004) Provenance of Paleozoic sandstones from the carnic alps (Austria): petrographic and geochemical indicators. Int J Earth Sci 93(2):262–281

    Article  Google Scholar 

  • McLennan SM (1993) Weathering and global denudation. J Geol 101:295–303

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosys (G3) 2(2):10–21. doi:10.1029/2000GC000109

    Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Mineral Geochem 21:169–200

    Google Scholar 

  • McLennan SM, Taylor SR, Eriksson KA (1983) Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia. Geochim Cosmochim Acta 47:1211–1222

    Article  Google Scholar 

  • McLennan SM, Hemming S, McDaniel, DK, Hanson, GN (1993) Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson MJ and Basu A (eds.), Processes Controlling the Composition of Clastic Sediments. Geol Soc Am Sp Pap 21–40

  • Mongelli G, Cullers RL, Muelheisen S (1996) Geochemistry of Late Cretaceous-Oligocenic shales from the Varicolori Formation, south-ern Apennines, Italy: implications for mineralogical, grain-size control and provenance. Europ J Mineral 8:733–754

    Google Scholar 

  • Murali AV, Parthasarathy R, Mahadevan TM, Sankar Das M (1983) Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environment—a case study on Indian zircons. Geochim Cosmochim Acta 47:2047–2052

    Article  Google Scholar 

  • Nadimi A (2007) Evolution of t he Central Iranian basement. Gondwana Res 12:324–333

    Article  Google Scholar 

  • Najafzadeh A, Jafarzadeh M, Moussavi-Harami R (2010) Provenance and tectonic setting of Upper Devonian sandstones from Ilanqareh Formation (NW Iran). Rev Mex Cienc Geol 27(3):545–561

    Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Nesbitt HW, Young GM, McLennan SM, Keays RR (1996) Effect of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J Geol 104:525–542

    Article  Google Scholar 

  • Ohta T (2004) Geochemistry of Jurassic to Earliest Cretaceous deposits in the Nagato Basin, SW Japan: implication of factor analysis to sorting effects and provenance signatures. Sediment Geol 171:159–180

    Article  Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1972) Sand and sandstones. Springer, New York

    Google Scholar 

  • Popov LE, Bassett MG, Holmer LE, Ghobadi Pour M (2009) Early ontogeny and soft tissue preservation in siphon tretide brachiopods: new data from the Cambrian–Ordovician of Iran. Gondwana Res 16:151–161

    Article  Google Scholar 

  • Rickards RB, Wright AJ, Hamedi MA (2000) Late Ordovician and Early Silurian graptolites from southern Iran Records of the Western Australian Museum. Supplement 58:103–122

    Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sand-stone-mudstone Suites using SiO2 content and K2O/Na2O ratio. J Geol 635–650

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone–mud-stone suites determined using discriminant function analysis of major-element data. Chemi Geol 67:119–139

    Article  Google Scholar 

  • Ruban DA, Al-Husseini MI, Iwasaki Y (2007) Review of Middle East Paleozoic plate tectonics. Geo Arabia 12:35–56

    Google Scholar 

  • Ruttner AW, Nabavi MH, Hajian J (1968) Geology of the Shirgesht area (Tabas area, east Iran) Geological Survey of Iran. Reports 4:1–133

    Google Scholar 

  • Ruttner AW, Nabavi MH, Hajian J (1994) 1:100,000 geological map of Shirgesht

  • Schwab FL (1975) Framework mineralogy and chemical composition of continental margin-type sandstone. Geology 3:487–490

    Google Scholar 

  • Sengör AMC (1987) Tectonics of the Tethysides: orogenic collage development in a collisional setting. Annu Rev Earth Planet Sci 15:213–244

    Article  Google Scholar 

  • Stöcklin J (1968) Structural history and tectonics of Iran: a review. Am Assoc Petrol Geol Bull 52:1229–1258

    Google Scholar 

  • Stampfli G, Marcoux J, Baud A (1991) Tethyan margins in space and time. Palaeogeogr Palaeoclimatol Paleoecol 87:373–409

    Article  Google Scholar 

  • Sun L, Gui H, Chen S (2012) Geochemistry of sandstones from the Neoproterozoic Shijia Formation, northern Anhui Province, China: implications for provenance, weathering and tectonic setting, Chemie Erde. Geochem 72(3):253–260

    Google Scholar 

  • Suttner LJ, Dutta PK (1986) Alluvial sandstone composition and paleoclimate. I. Framework mineralogy. J Sediment Petrol 56:329–345

    Google Scholar 

  • Suttner LJ, Basu A, Mack GH (1981) Climate and the origin of quartz arenites. J Sediment Petrol 51:235–246

    Google Scholar 

  • Tijani MN, Nton ME, Kitagawa R (2010) Textural and geochemical characteristics of the Ajali Sandstone. Anabra Basin, SE Nigeria: Implication for its provenance. Comptes Rendus Geosci 342:136–150

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford

    Google Scholar 

  • Valloni R, Maynard B (1981) Detrital modes of recent deep-sea sands and their relation to tectonic setting: a first approximation. Sediment 28:75–83

    Article  Google Scholar 

  • Wanas HA, Abdel-Maguid NM (2006) Petrography and geochemistry of the Cambro-Ordovician Wajid Sandstone, southwest Saudi Arabia: Implications for provenance and tectonic setting. J Asian Earth Sci 27:416–429

    Article  Google Scholar 

  • Weltje GJ (1994) Provenance and dispersal of sand-sized sediments: reconstruction of dispersal patterns and sources of sand-sized sediments by means of inverse modeling techniques. Ph.D. thesis, Geologica Ultraiectina

  • Wendt J, Kaufmann B, Belka Z, Farsan N, Karimi Bavandpur A (2002) Devonian/Lower Carboniferous stratigraphy, facies patterns and palaeogeography of Iran. Part I. Southeastern Iran. Acta Geol Pol 52:129–168

    Google Scholar 

  • Wendt J, Kaufmann B, Belka Z, Farsan N, Karimi Bavandpur A (2005) Devonian/Lower Carboniferous stratigraphy, facies patterns and palaeogeography of Iran. Part II. Northern and central Iran. Acta Geol Pol 55:31–97

    Google Scholar 

  • Young SW (1976) Petrographic textures of detrital polycrystalline quartz as an aid to interpreting crystalline source rocks. J Sediment Petrol 46:595–603

    Google Scholar 

  • Zaid SM (2012) Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt. J Afr Earth Sci 66–67:56–71

    Article  Google Scholar 

  • Zimmermann U, Bahlburg H (2003) Provenance analysis and tectonic setting of the Ordovician clastic deposits in the southern Puna Basin, NW Argentina. Sedimentology 50:1079–1104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohreh Nowrouzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowrouzi, Z., Moussavi-Harami, R., Mahboubi, A. et al. Petrography and geochemistry of Silurian Niur sandstones, Derenjal Mountains, East Central Iran: implications for tectonic setting, provenance and weathering. Arab J Geosci 7, 2793–2813 (2014). https://doi.org/10.1007/s12517-013-0912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-0912-7

Keywords

Navigation