Skip to main content
Log in

Forced folding of the neoautochthonous Late Cretaceous–Early Tertiary sequence at the western end of the Hatta Zone, Northern Oman Mountains

الطي المجبر للتتابع الصخري الثابت (hthonousneoautoc) الجديد الممتد من الطباشيري المتأخر إلى الثلاثي المبكر عند النهاية الغربية لنطاق حتا في جبال عمان الشمالية.

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

At the western end of the Hatta Zone (the Jebel Rawdha area), Northern Oman Mountains, the neoautochthonous Late Cretaceous–Early Tertiary sequence (“cover”) lies with an angular unconformity on the obducted Semail ophiolite, Haybi Complex and Sumeini Group (“basement”). Structural analysis of the faults in both the basement and cover sequences has shown that they are similar in type and configuration to those that develop in a transpressional left-lateral strike-slip deformational regime (a restraining bend) that is characterised by the dominance of the dip-slip component over the strike-slip component. The WNW–ESE (Po) faults together with the linking NW–SE (P) faults have divided the basement into elongated blocks. These blocks, in turn, are subdivided by transverse normal faults into horst and graben sub-blocks. The cover sequence is gently folded into a generally WNW–ESE-trending ‘Main’ folds and NE–SW-trending ‘Cross’ folds superimposed on them. These folds appear to be dominantly forced folds that developed as a result of repeated uplift and depression of basement blocks. Their trends correspond to the trends of the subjacent basement blocks. Hence, the Jebel Rawdha folds trend differently from other post-obduction major folds in the foreland region of the Northern Oman Mountains, such as the Hafit and Jebel Faiyah folds. Differences in stratigraphic thicknesses and lateral facies changes of the cover sequence within the blocks and sub-blocks indicate that the earliest differential movement of the blocks must have occurred during the early Maastrichtian, and the latest movement in post-mid-Eocene. Thus, pushing back the initiation of the post-obduction deformation in the Northern Oman Mountains to the early Maastrichtian.

ملخص:

في منطقة جبل الروضة عند النهاية الغربية لنطاق حتا في جبال عمان الشمالية، يقع التتابع الصخري الثابت الجديد (neoautochthonous) الممتد من الطباشيري المتأخر إلى الثلاثي المبكر (الغطاء) فوق أوفيولايت السمائل العكسية الإندساس (obducted) ومعقد حيبي ومجموعة السميني (القاعدة) مع وجود عدم توافق زاوي بين القاعدة والغطاء. أظهر التحليل التركيبي للصدوع الموجودة في تتابعات صخور القاعدة والغطاء، أنها مشابهة في النوع والترتيب لتلك الصدوع التي تنشأ في نظام تشوهي مضربي الإنزلاق يساري ضاغط (إنحناء كابح) الذي يتميز بهيمنة مركبة الإنزلاق الميلي على مركبة الإنزلاق المضربي. لقد قسمت صدوع ذات إتجاه غرب شمال غرب – شرق جنوب شرق، بالإشتراك مع الصدوع الرابطة ذات إتجاه شمال غرب – جنوب شرق، القاعدة إلى كتل صخرية متطاولة. وهذه الكتل الصخرية قد قُسمت بدورها بواسطة الصدوع العادية المستعرضة إلى كتل صخرية بارزة وأخدودية أصغر. تطوى تتابع الغطاء بصورة خفيفة إلى طيات رئيسية متجهة بصورة عامة بإتجاه غرب شمال غرب – شرق جنوب شرق وطيات معترضة متجهة بإتجاه شمال شرق – جنوب غرب منطبعة على الطيات الرئيسية. تدل هذه الطيات على أنها بغالبيتها طيات مجبرة، نشأت نتيجة الإرتفاع والإنخفاض المتكررين لكتل القاعدة الصخرية. تطابق إتجاهات هذه الطيات إتجاهات كتل القاعدة الواقعة تحتها، ولهذا السبب تتجه طيات جبل الروضة بصورة مختلفة عن إتجاهات الطيات الكبرى من عمر ما بعد الإندساس العكسي (post­obduction) في المنطقة الأمامية لجبال عمان الشمالية مثل طيات حفيت وجبل الفاية. تدل الإختلافات في السماكات الستراتجرافية والتغيرات الجانبية للسحنات في صخور تتابع الغطاء داخل الكتل الكبرى والصغرى، أن أقدم الحركات التفاضلية للكتل الصخرية يجب أن يكون قد حدث أثناء الماستريختي المبكر، وأن أحدث الحركات كانت في ما بعد منتصف الإيوسين. على هذا النحو يكون تاريخ بداية تشوه ما بعد الإندساس العكسي (deformation post­obduction) في جبال عمان الشمالية قد تراجع إلى الماستريختي المبكر.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abdollahie FI, Braathen A, Mokhtari M, Alavi SA (2006) Interaction of the Zagros Fold-Thrust Belt and the Arabian-type deep-seated folds in the Abadan Plain and the Dezful Embayment, SW Iran. Pet Geosci 12(4):347–362

    Article  Google Scholar 

  • Ahmadhadi F, Lacombe O, Daniel JM (2007) Early reactivation of basement faults in Central Zagros (SW Iran): Evidence from pre-folding fracture populations in the Asmari Formation and Lower Tertiary paleogeography. In “ Thrust belts and foreland basins : from fold kinematics to hydrocarbon systems”. Lacombe O, Lavé J, Vergés J, Roure F (Eds), Frontiers in Earth Sciences, Springer-Verlag, New York chapter 11, 205–228.

  • Ahmadhadi F, Daniel J M, Azzizadeh M, Lacombe O (2008) Evidence for pre-folding vein development in the Oligo-Miocene Asmari Formation in the Central Zagros Fold Belt, Iran. Tectonics 27, TC1016, doi: 10.1029/2006TC001978

  • Bartlett WL, Friedman M, Logan JM (1981) Experimental folding and faulting of rocks under confining pressure, Part IX. Wrench faults in limestone layers. Tectonophysics 79:255–277

    Article  Google Scholar 

  • Boote DRD, Mou D, Waite RI (1990) Structural evolution of the Suneinah Foreland, Central Oman Mountains. In: Robertson AHF, Searle MP, Ries AC (eds) The Geology and Tectonics of the Oman Region, 49 Special Publication. Geological Society, London, pp 397–418

    Google Scholar 

  • Cosgrove JW (2000) Forced folds and fractures: An introduction. In: Cosgrove JW, Ameen MS (eds) Forced folds and fractures, 169 Special Publication. Geological Society, London, pp 1–6

    Google Scholar 

  • Cosgrove JW, Ameen MS (2000) A comparison of the geometry, spatial organization and fracture patterns associated with forced folds and buckle folds. In: Cosgrove JW, Ameen MS (eds) Forced folds and fractures, 169 Special Publication. Geological Society, London, pp 7–21

    Google Scholar 

  • Cunningham WD, Windley BF, Dorjnamjaa D, Badamgarov J, Saandar M (1996) Late Cenozoic transpression in southwestern Mongolia and the Gobi Altai-Tien Shan connection. Earth Planet Sci Lett 140:67–81

    Article  Google Scholar 

  • Davis GH, Reynolds SJ (1996) Structural geology of rocks and regions. Wiley, New York

    Google Scholar 

  • Dunne LA, Manoogian PR, Pierini DF (1990) Structural style and domains of the Northern Oman Mountains (Oman and United Arab Emirates). In: Robertson AHF, Searle MP, Ries AC (eds) The Geology and Tectonics of the Oman Region, 49 Special Publication. Geological Society, London, pp 375–386

    Google Scholar 

  • Ellison R A, Styles MT (2006) The Geology and Geophysics of the United Arab Emirates. Volume 1: Executive Summary. British Geological Survey

  • Fowler TJ (1996) The properties and geological environments of helicoids: axially symmetric surfaces in torsional and non-torsional deformations. J Struct Geol 18:505–517

    Article  Google Scholar 

  • Friedman M, Handin J, Logan JM, Min KD, Stearns DW (1976) Experimental folding of rocks under confining pressure: part III. Faulted drape folds in multilithologic layered specimens. Geol Soc Am Bull 87:1049–1066

    Article  Google Scholar 

  • Gealey WK (1977) Ophiolite obduction and geologic evolution of the Oman Mountains and adjacent areas. Geol Soc Am Bull 88:1183–1191

    Article  Google Scholar 

  • Glennie KW, Boeuf MGA, Hughes Clarke MW, Moody-Stuart M, Pilaar WFH, Reinhardt BM (1974) Geology of the Oman Mountains. Verhandelingen van het Koninklijk Nederlands geologisch mijnbouwkundig Genootschap. Nijhoff 31:1–423

    Google Scholar 

  • Greenwood JEGW, Loney PE (1968) Geology and mineral resources of the Trucial Oman Range, a reconnaissance survey of part of the Trucial States. Institute of Geological Sciences, Overseas Division Report

  • Hertig SP, Hooks JD, Christopher RA, Clowser, DR, Marshall PR (1994) Depositional and Biostratigraphic Framework of Potential Calci-turbidite Reservoirs in the Dubai U.A.E. part of the Oman Mountain Cenozoic Foreland Basin. Geo 94, Middle East Petroleum Geosciences, Vol. II, 497–504

  • Hunting (Geology and Geophysics Ltd) (1979) Report on a Mineral Survey of the U.A.E. Volume 1, Survey Programme and Notes on the Geological Map of the U.A.E. Ministry of Petroleum and Mineral Resources, U.A.E, pp 1–35

    Google Scholar 

  • Jamison WR (1991) Kinematics of compressional fold development in convergent wrench terranes. Tectonophysics 190:209–232

    Article  Google Scholar 

  • Jones RR, Tanner PWG (1995) Strain partitioning in transpression zones. J Struct Geol 17:793–802

    Article  Google Scholar 

  • Keller JVA, Hall SH, McClay KR (1997) Shear fracture pattern and microstructural evolution in transpressional fault zones from field and laboratory studies. J Struct Geol 19:1173–1187

    Article  Google Scholar 

  • Krantz RW (1995) The transpressional strain model applied to strike-slip, oblique-convergent and oblique-divergent deformation. J Struct Geol 17:1125–1137

    Article  Google Scholar 

  • Moore DE, Byerlee JD (1991) Comparative geometry of the San Andreas fault, California and laboratory fault zones. Geol Soc Am Bull 103:762–774

    Article  Google Scholar 

  • Morgenstern NR, Tchalenko JS (1967) Microscopic structures in kaolin subjected to direct shear. Geotechnique 17:309–328

    Article  Google Scholar 

  • Mouthereau F, Tensi J, Bellahasen N, Lacombe O, De Boisgrollier T, Kargar S (2007) Tertiary sequence of deformation in a thin-skinned/thick-skinned collision belt: The Zagros Folded Belt (Fars, Iran). Tectonics 26, TC5006, doi:10.1029/2007TC002098

  • Naville C, Ancel M, Andriessen P, Broto K, Jardin A, Perdrizet T, Ricarte P, Roure F (2009) Current knowledge on the thickness of the Semail ophiolite in the Northern Emirates. Lithosphere dynamics and sedimentary basins: The Arabian plate and analogues, 5th workshop of the ILP-Task Force on Sedimentary Basins, Abstracts with Programme, December 6–11, 2009, Abu Dhabi (United Arab Emirates)

  • Naylor MA, Mandl G, Sijpesteijn CHK (1986) Fault geometries in basement-induced wrench faulting under different initial stress states. J Struct Geol 8:737–752

    Article  Google Scholar 

  • Nolan SC, Skelton PW, Clissold BP, Smewing JD (1990) Maastrichtian to early Tertiary stratigraphy and palaeogeography of the Central and Northern Oman Mountains. In: Robertson AHF, Searle MP, Ries AC (eds) The Geology and Tectonics of the Oman Region 49 Special Publication. Geological Society, London, pp 495–519

    Google Scholar 

  • Patton TL, O’Connor SJ (1988) Cretaceous flexural history of Northern Oman Mountain Foredeep, United Arab Emirates. The American Association of Petroleum Geologists Bulletin 72:797–809

    Google Scholar 

  • Price NJ, Cosgrove JW (1990) Analysis of Geological Structures. Cambridge University Press, Cambridge

    Google Scholar 

  • Ramsay JG, Huber MI (1987) The techniques of modern structural geology. Volume 2: Folds and Fractures. Academic Press, London

    Google Scholar 

  • Ricateau R, Riché PH (1980) Geology of the Musandam peninsula (Sultanate of Oman) and its surroundings. J Pet Geol 3:139–152

    Article  Google Scholar 

  • Robertson A (2004) Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions. Earth Sci Rev 66:331–387

    Article  Google Scholar 

  • Robertson AHF, Kemp AES, Rex DC, Blome CD (1990) Sedimentary and structural evolution of a continental margin transform lineament: the Hatta Zone, Northern Oman Mountains. In: Robertson AHF, Searle MP, Ries AC (eds) The Geology and Tectonics of the Oman Region, 49 Special Publication. Geological Society, London, pp 285–305

    Google Scholar 

  • Sanderson DJ, Marchini WRD (1984) Transpression. J Struct Geol 6:449–458

    Article  Google Scholar 

  • Sanford AR (1959) Analytical and experimental study of simple geologic structures. Geol Soc Am Bull 70:19–52

    Article  Google Scholar 

  • Searle MP (1985) Sequence of thrusting and origin of culminations in the northern and central Oman Mountains. J Struct Geol 7:129–143

    Article  Google Scholar 

  • Searle MP (2009) Crustal evolution of the Oman Mountains: from ophiolite obduction to early continental collision. Lithosphere dynamics and sedimentary basins: The Arabian plate and analogues, 5th workshop of the ILP-Task Force on Sedimentary Basins, Abstracts with Programme, December 6–11, 2009, Abu Dhabi (United Arab Emirates)

  • Searle MP, Malpas J (1980) Structure and metamorphism of rocks beneath the Semail Ophiolite of Oman and their significance in ophiolite obduction. R Soc Edinb Trans Earth Sci 71:247–262

    Google Scholar 

  • Searle MP, James NP, Calon TJ, Smewing JD (1983) Sedimentological and structural evolution of the Arabian continental margin in the Musandam Mountain and Dibba zone, United Arab Emirates. Geol Soc Am Bull 94:1381–1400

    Article  Google Scholar 

  • Searle MP, Warren CJ, Waters DJ, Parrish RR (2004) Structural evolution, metamorphism and restoration of the Arabian continental margin, Saih Hatat region, Oman Mountains. J Struct Geol 26:451–473

    Article  Google Scholar 

  • Skelton PW, Nolan SC, Scott RW (1990) The Maastrichtian transgression onto the northwestern flank of the Proto-Oman Mountains: sequences of rudist-bearing beach to open shelf facies. In: Robertson AHF, Searle MP, Ries AC (eds) The Geology and Tectonics of the Oman Region, 49 Special Publication. Geological Society, London, pp 521–547

    Google Scholar 

  • Skempton AW (1966) Some observations on tectonic shear zones. First International Congress on Rock Mechanics. Proceedings 1:329–335

    Google Scholar 

  • Stearns DW (1978) Faulting and forced folding in the Rocky Mountains foreland. Geol Soc Am Mem 151:1–38

    Google Scholar 

  • Steuber T, Lokier S (2009) Strontium-isotop stratigraphy and Rudists of the Qahlah and Simsima Formations (UAE, Oman). Lithosphere dynamics and sedimentary basins: The Arabian plate and analogues, 5th workshop of the ILP-Task Force on Sedimentary Basins, Abstracts with Programme, December 6–11, 2009, Abu Dhabi (United Arab Emirates)

  • Styles MT, Thomas RJ, Phillips ER, Goodenough KM, Schofield DI, Farrant AR (2006) Geology of the Hatta area, Sheet explanation of the 1:50 000 map sheet 50-5. British Geological Survey, United Arab Emirates

    Google Scholar 

  • Swanson MT (1988) Pseudotachylite-bearing strike-slip duplex structures in the Fort Foster Brittle Zone, S. Maine. J Struct Geol 10:813–828

    Article  Google Scholar 

  • Sylvester A (1988) Strike-slip faults. Geol Soc Am Bull 100:1666–1703

    Article  Google Scholar 

  • Tchalenko JS (1970) Similarities between shear zones of different magnitudes. Geol Soc Am Bull 81:1625–1640

    Article  Google Scholar 

  • Tchalenko JS, Ambraseys NN (1970) Structural analysis of the Dasht-e-Bayaz (Iran) earthquake fractures. Geol Soc Am Bull 81:41–66

    Article  Google Scholar 

  • Teper L (2000) Geometry of fold arrays in the Silesian-Cracovian region of southern Poland. In: Cosgrove JW, Ameen MS (eds) Forced folds and fractures, 169 Special Publication. Geological Society, London, pp 167–179

    Google Scholar 

  • Warburton J, Burnhill TJ, Graham RH, Isaac KP (1990) The evolution of the Oman Mountains Foreland Basin. In: Robertson AHF, Searle MP, Ries AC (eds) The Geology and Tectonics of the Oman Region, 49 Special Publication. Geological Society, London, pp 419–427

    Google Scholar 

  • Warrak M (1986) Structural evolution of the Northern Oman Mountains front, Al Ain region. Proceedings of Abu Dhabi Symposium on: Hydrocarbon Potential of Intense Thrust Zones. Ministry of Petroleum and Mineral Resources, U.A.E. and Organization of Arab Petroleum Exporting Countries, Kuwait 1, 375–431

  • Warrak M (1987) Synchronous deformation of the neoautochthonous sediments of the Northern Oman Mountains. In: Proceedings of SPE 5th Conference, Bahrain, 129–136

  • Warrak M (1990) Structure of Jebel Rawdha area, Northern Oman Mountains. Abstracts of Proceedings of Muscat Symposium on: Ophiolite Genesis and Evolution of Oceanic Lithosphere. UNESCO, Sultanate of Oman

  • Warrak M (1996) Origin of the Hafit structure: implications for timing the Tertiary deformation in the Northern Oman Mountains. J Struct Geol 18:803–818

    Article  Google Scholar 

  • Woodcock NJ, Fischer M (1986) Strike-slip duplexes. J Struct Geol 8:725–735

    Article  Google Scholar 

  • Woodcock NJ, Schubert C (1994) Continental strike-slip tectonics. In: Hancock PL (ed) Continental deformation. Pergamon, New York, pp 251–263

    Google Scholar 

Download references

Acknowledgements

I wish to thank Dr. N. H. Woodcock for reviewing an early version of the manuscript and Dr. F. Roure for his comments and suggestion to improve Fig. 1. Help with the research facilities provided by the UAE University is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Warrak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warrak, M. Forced folding of the neoautochthonous Late Cretaceous–Early Tertiary sequence at the western end of the Hatta Zone, Northern Oman Mountains. Arab J Geosci 3, 369–393 (2010). https://doi.org/10.1007/s12517-010-0174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-010-0174-6

Keywords

Navigation