Skip to main content

Advertisement

Log in

Mineralogy, petrography, and biostratigraphy of the Lower Eocene succession at Gebel El-Qurn, West Luxor, Southern Egypt

معدنية، بتروجرافية وبيوستراتجرافية تتابع الأيوسين السفلي بجبل القرن، غرب الأقصر، جنوب م

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The widely exposed siliciclastic/carbonate succession exposed at Gebel El-Qurn, west Luxor, has been investigated from the mineralogical, petrographical and biostratigraphical points of view. The succession belongs to the lower Eocene, including the upper Esna Shale and the Thebes Formations that have been deposited under varied marine conditions and during alternating periods of abundant and ceased clastic influx. They contain abundant and well-diversified planktonic foraminifera and calcareous nannoplankton, suggesting deposition in open marine inner to middle shelf environments. Mineralogical analysis carried out by XRD revealed the presence of smectite, illite, kaolinite, sepiolite, palygorskite, and smectite–illite-mixed layer as the principal clay minerals, and calcite, dolomite, quartz, anhydrite, gypsum, hematite, and goethite as non-clay minerals. The clay mineral distributions in the sediments reflect the climatic conditions and the weathering processes at the source area as well as the differential hydraulic sorting during transportation. Calcite is the most abundant non-clay mineral, and this is consistent with high calcareous fossil content of the sediments. Petrographic examination of the carbonate lithologies within the succession enables to identify eight microfacies associations. These microfacies were affected by several diagenetic processes including; micritization, compaction, cementation, neomorphism, dissolution, dolomitization, and silicification. Dissolution of original test wall and replacement and infilling by iron oxides and recrystallized calcite were commonly observed. Calcareous nannofossils are generally common to frequent, highly diversified, and moderately to well preserved. Two calcareous nannofossil biozones; Tribrachiatus contortus Zone (NP10) and Discoaster binodosus (NP11) are recorded in the studied sediments suggesting lower Eocene age. Their associated nannofossil taxa are characterized by the predominance of warm water species. Sea-level fluctuations, basin physiography, climate, paleogeography, and sediment supply were the major controls on the deposition of the lower Eocene sediments at Gebel El-Qurn.

الملخص العربي

تم دراسة التتابع الفتاتي السيليسي/ الجيري بجبل القرن غرب مدينة الأقصر بهدف التعرف علي التركيب المعدني والخصائص البتروجرافية والبيواستراتجرافية لهذة الصخور. وينتمي هذا التتابع للأيوسين السفلي ويشمل تكوينى الأسنا العلوي وطيبه اللذان ترسبا تحت ظروف بحرية متباينه أثناء فترات متفاوته من زيادة وقلة النشاط الفتاتي. وتحتوي هذه الصخور علي أنواع عديدة ومتنوعة من الفورامينفرا الهائمة والنانوبلانكتون الجيرية والتي تشير إلي الترسيب في بيئة بحرية عميقة إلي متوسطة، ويشير التحليل المعدني باستخدام حيود الأشعة السينية إلي وجود معادن الأسمكتيت، الأليت، الكاولينيت، السبيوليت والباليجورسكيت اضافه إلي معادن الطين المختلطه من الأسمكتيت/الأليت. في حين تشكل معادن الكالسيت والدولوميت والكوارتز والأنهيدريت والجبس والهيماتيت والجوتايت مجموعة المعادن غير الطينية. وقد ساهم توزيع المعادن الطينية في التعرف علي الظروف المناخية وعمليات التجوية لصخور المصدر وكذا تباين درجات الفرز اثناء عمليات النقل للرواسب. ويعتبر الكالسيت من أكثر المعادن الغير طينية انتشارا في الصخور وهو ما يتمشي مع زيادة المحتوي الأحفوري للرواسب. وقد أدت الدراسة البتروجرافية للصخور الجيرية إلي تقسيم التتابع إلي ثمانية سحنات صخرية تأثرت بالعديد من عمليات ما بعد الترسيب كترسيب الجير، التضاغط، السمنته، اعادة التشكل، الأذابة، الدلمته، الأحلال بالسليكا والأمتلاء بالحديد اضافة إلي اعاده التبلور. وتتباين احافير النانوبلانكتون الجيرية في درجة انتشارها في الصخور وتنوعها وكذا درجة الحفظ لها. كما تم تسجيل نطاقين احفوريين يشيرا إلي الأيوسين السفلي. هذا ويلعب تذبذب مستوي سطح البحر وشكل الحوض الترسيبي والمناخ والجغرافية القديمة ومعدل الأمداد للرواسب دورا هاما في ترسيب الأيوسين السفلي في المنطقة.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aboul Ela NM (1989) Lower tertiary microflora from the Esna Shale of the Red Sea Coast, Egypt. Rev Esp Micropaleontol 21:189–206

    Google Scholar 

  • Aboul Fetouh M (1973) Mineralogical and geochemical studies on Esna Shales, Nile Valley, ARE. Ph.D. Thesis, Ain Shams University

  • Al-Sayegh AH, Ojha ON, Aswad KJ (1976) A new occurrence of palygorskite in Nineva District, Iraq. Rafidain J Sci, Mosul University, 1, pp 19–40

  • Anan HS (1974) Biostratigraphy of Luxor section (Gebel Gurnah), Nile Valley. M.Sc. Thesis, Ain Shams Univ, Cairo, Egypt

    Google Scholar 

  • Aubry, M.-P. (1996) Eocene to upper Miocene calcareous nannofossil stratigraphy. In Mountain, G.S., Miller, K.G., Blum, P., Poag, C.W., and Twichell, D.C. (Eds.), Proc. ODP, Sci. Results, 150: College Station, TX (Ocean Drilling Program), p 435–437.

  • Aubry M-P (1999) Late Paleocene-early Eocene sedimentary history in western Cuba: implication for LPTM and for regional tectonic history. In: Fluegemen RM, Aubry M-P (eds) Lower Paleogene biostratigraphy of Cuba. Micropaleontology v. 45, supplement 2, p 15–18

  • Aubry M-P, Berggren WA, Stott L, Sinha A (1996) The upper Paleocene–lower Eocene stratigraphic record and the Paleocene/Eocene boundary carbon isotope excursion: implications for geochronology. In: Knox RWOB, Corfield RM, Dunay RE (eds) Correlation of the Early Paleogene in Northwestern Europe. Geol Soc Spec Publ 101, pp 353–380

  • Aubry M-P, Ouda K, Dupuis C, Van Couvering JA. and the Members of the Working Group on the Paleocene/Eocene Boundary: Ali J, Berggren WA, Brinkhuis H, Gingerich PH, Heilmann-Clausen C, Hooker J, Kent DV, King C, Knox RWOB, Laga P, Molina E, Schmitz B, Steurbaut E, Ward DR (2002) Global Standard Stratotype-section and Point (GSSP) at the Dababiya section (Egypt) for the Base of the Eocene Series. International Subcommission on Paleogene Stratigraphy, Internal Report, p 58

  • Badiozamani K (1973) The Dorag dolomitization model-application to the Middle Ordovician of Wisconsin. J Sed Petrol 43:965–984

    Google Scholar 

  • Barakat MG, El-Dawoody AS (1973) A microfacies study of the upper Cretaceous-Paleocene-Lower Eocene sediments at Duwi and Gurnah sections, southern Egypt. Ann Inst Ged Publ Hung Budapest, pp 391–414

  • Bathurst RGC (1975) Carbonate sediments and their diagenesis. Developments in sedimentology 12. Elsevier, Amsterdam, p 658

    Google Scholar 

  • Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Amer Bull 76:803–832

    Article  Google Scholar 

  • Bown P (1998) Calcareous nannofossil biostratigraphy. Chapman and Hall, Cambridge, p 314

    Google Scholar 

  • Bralower TJ, Mutterlose J (1995) Calcareous nannofossil biostratigraphy of Site 865, Allison Guyot, Central Pacific Ocean: a tropical Paleogene reference section. In: Winterer EL, Sager WW, Firth JV, Sinton JM (eds) Proc. ODP, Sci Results, 143: College Station, TX (Ocean Drilling Program), pp 31–74

  • Bronnimann P, Stradner H (1960) Die Foraminiferen- und Discoasteriden-Zonen von Kuba und ihre interkontinentale Korrelation. Erdoel-Zaltschr 76:364-369

    Google Scholar 

  • Bybell LM, Shelf-Trial JM (1997) Late Paleocene and early Eocene calcareous nannofossils from three boreholes in an onshore-offshore transect from New Jersey to the Atlantic Continental Rise. Proc Ocean Drill Program Sci Results 150:91–110

    Google Scholar 

  • Carrels RM (1984) Montmorillonites, illite stability diagrams. Clays Clay Miner 32:161–166

    Article  Google Scholar 

  • Chamley H (1989) Clay sedimentology. Springer-Verlag, Berlin, p 623

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. AAPG Mem. 1, pp 108–121

  • Dupuis C, Aubry M-P, Steurbaut E, Berggren WA, Ouda K, Magioncalda R, Cramer BS, Kent DV, Speijer RP, Heilmann-Clausen C (2003) The Dababiya Quarry section: Lithostratigraphy, clay mineralogy, geochemistry and paleontology. In: Ouda K, Aubry M-P (eds) The upper Paleocene-lower Eocene of the upper Nile valley: Stratigraphy. Micropaleontology 49(Suppl 1):41–59

  • El-Bayomi GM (2007) The geomorphological hazards in the Archaeological are west of Qena bend. J Appl Sci Res 3(3):175–184

    Google Scholar 

  • El-Kammar AM (1984) Geochemical and petrologic changes occurring during the weathering of Fe-rich dolomite, Abu Tartur Plateau, Western Desert, Egypt. Libyan J Sci 13:41–54

    Google Scholar 

  • El-Kammar AM, Basta EZ (1983) Chemical weathering of the economic phosphates of Abu-Tartur, Western Desert, Egypt. Chem Geol 38:321–328

    Article  Google Scholar 

  • El-Kammar AM, Dabous AA, Selim SR (1991) Mineral and chemical composition of Esna Shale in Luxor, Southern Egypt. MERC Ain Shams Univ, Earth Sci Ser 5:120–132

    Google Scholar 

  • Embry AF, Klovan JE (1972) Absolute water depth limits of late Devonian paleoecological zones. Geol Rundsch 61:672–686

    Article  Google Scholar 

  • Faris M (1984) The cretaceous-tertiary boundary in central Egypt (Duwi region, Nile Valley, Kharga and Dakhla Oases). Neues Jb Geol Paläontol Abh 7:385–392

    Google Scholar 

  • Faris, M. and Soliman, Soliman M. (1961): Petrology of the dolomite rocks of Abu Roash and its consideration to possible petroleum reservoirs in other parts of Egypt. 3rd Arab Petrol. Congr. Alexandria, p 30

  • Faris M, Strougo A (1998) The lower Libyan in Farafra (Western Desert) and Luxor (Nile Valley); correlation by calcareous nannofossils. MERC Ain Shams Univ, Earth Sci Ser 12:137–156

    Google Scholar 

  • Flugel E (1982) Microfacies analysis of limestone. Springer-Verlag, New York, p 933

    Google Scholar 

  • Folk RL (1959) Practical petrographic classification of limestone. Bull Am Assoc Pet Geol 43:1–38

    Google Scholar 

  • Folk RL (1965) Some aspects of recrystallization in ancient limestone. In: Pray LC, Murray RC (eds) Dolomitization and limestone diagenesis. SEPM Spec Publ 5:14–88

  • Frank JR (1981) Dedolomitization in the Taum Sauk Limestone (Upper Camb.), Southeast Missouri. J Sed Petrol 51:7–18

    Google Scholar 

  • Friedman GM (1971) Procedures in sedimentary petrology, chapter 22. In: Carver RE (ed) Wiley, New York. p 511

  • Ghandour IM, Abdel-Hameed AT, Faris M, Marzouk A, Maejima W (2004) Textural, mineralogical and microfacies characteristics of the Lower Paleogene succession at the Nile Valley and Kharga Oasis regions, Central Egypt. J Geosci Osaka City Univ 47(Art. 4):39–53

    Google Scholar 

  • Gindy AR, Al-Shakiry AJ, Sa'ad NA (1985) Spheroidal weathering in marls and chalks of Gebel Gumah near Luxor, southern Egypt. J Sed Petrol 55:762–768

    Google Scholar 

  • Hafez AF, Hussein AS (2004) Radon activity concentrations and effective doses in ancient Egyptian Tombs of the Valley of the Kings. Appl Radiat Isot 55:355–362

    Article  Google Scholar 

  • Hamam KA (1975) Larger foraminifera from the lower Eocene of the Gebel Gurnah, Luxor, Egypt. Palaeontology 18(Part 1):161–178

    Google Scholar 

  • Hegab OA (1974) Comparative petrological and mineralogical studies of some Egyptian clays. Ph.D. thesis, Fac. Sci., El-Mansoura University, Egypt

  • James NP, Choquette PW (1984) Diagenesis 9: limestones- the meteoric diagenetic environment. Geosci Can 11(4):161–194

    Google Scholar 

  • Jiang MJ, Gartner S (1986) Calcareous nannofossil succession across the Cretaceous/Tertiary boundary in east-central Texas. Micropaleontology 32:232–255

    Article  Google Scholar 

  • Leisen HV, Plehwe-Leisen E, Verbeek C, Jurgens C, Krause S (2008) Aspects of conservation in the excavation site of the Athribis temple in Egypt. Environ Geol 56:689–697

    Article  Google Scholar 

  • Longman MW (1977) Factors controlling the formation of microspar in the Bromide Formation. J Sed Petrol 47:347–350

    Google Scholar 

  • Martini E (1971) Standard tertiary and quaternary calcareous nannoplankton zonation. In: Farinacci A (ed) Proc. 2nd Int Conf Planktonic Microfossils Roma: Rome (Ed. Tecnosci.), 2, pp 739–785

  • McLane J, Wüst RAJ, Porter B, Rutherford J (2003) Flash-flood impacts and protection measures in the Valley of the Kings Luxor, Egypt. APT Bull 34:37–45

    Article  Google Scholar 

  • Millot G (1970) Geology of clays. Springer-Verlag, New York, pp 199–204

    Google Scholar 

  • Millot G (1979) Les phénomènes de l'épigénie calcaire et leur rôle dans l'atération. Sci Sol no sp.:259–261

  • Moore D, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Moore JC (1989) Tectonics and hydrogeology of accretionary prisms: role of the drcollement zone. J Struct Geol 11:95–106

    Article  Google Scholar 

  • Morris KA, Shepperd CM (1982) The role of clay minerals in influencing porosity and permeability characteristics in the Bridport Sands of Wytch Farm, Dorset. Clay Miner 17:41–54

    Article  Google Scholar 

  • Okada H, Bukry D (1980) Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Mar Micropaleontol 5:321–325

    Article  Google Scholar 

  • Perch-Nielsen K (1985) Mesozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 329–426

    Google Scholar 

  • Perch-Nielsen K, Sadek A, Barakat MG, Teleb F (1978) Late cretaceous and early tertiary calcareous nannofossils and planctonic foraminifera zones from Egypt: Actes du VI Colloque Africain Micropaleont, Tunis 1974, Annales des mines et de la geologie, Tunis, 28. II, p 337–403

  • Pettijohn FJ (1975) Sedimentary rocks, 3rd edn. Harper and Row, New York

    Google Scholar 

  • Purser B (1978) Early diagenesis and the preservation of porosity in Jurassic limestones. J Petrol Geol 1:83–94

    Article  Google Scholar 

  • Purser B, Tucker M, Zenger D (1994) Problems, progress and future research concerning dolomites and dolomitization. In: Purser B, Tucker M, Zenger D (eds) Dolomites: a volume in honour of dolomieu. Spec Publ Int Assoc Sedimentology 21, pp 3–20

  • Raucsik B, Merényi L (2000) Origin and environmental significance of clay minerals in the Lower Jurassic formations of the Mecsek Mts., Hungary. Acta Geol Hung 43:405–429

    Google Scholar 

  • Richter DK, Fuchrbauer H (1978) Ferroan calcite replacement indicates former magnesian calcite skeletons. Sedimentology 25:843–860

    Article  Google Scholar 

  • Romein AJT (1979) Lineages in early Paleogene calcareous nannoplankton. Utrecht Micropaleontol Bull 22:1–78

    Google Scholar 

  • Said R (1960) Planktonic foraminifera from the Thebes formation, Luxor, Egypt. Micropaleontology 6:277–285

    Article  Google Scholar 

  • Said R (1962) The geology of Egypt. Elsevier publishing company, Amsterdam-New York

    Google Scholar 

  • Said R (1990) The geology of Egypt. A.A. Balkema, Rotterdam, Netherlands, p 734

    Google Scholar 

  • Sibley DF (1991) Secular changes in the amount and texture of dolomite. Geology 19:151–154

    Article  Google Scholar 

  • Snavely PD, Garrison RE, Meguid AA (1978) Regional variation of depositional environments in the Thebes formation (Eocene) of Eastern Egypt-Response to pre-rift crustal doming: Bull. AAPG

  • Strougo A, Hassaan M (1984) Preliminary Macroinvertebrate Biostratigraphic Zonation of the Lower Eocene of Gurnah, Luxor Area: Ain Shams Sci. Bull., v.24, Part B, (1982–1983), pp 23–34

  • Strougo N, Faris M (1993) Paleocene-Eocene stratigraphy of Wadi El Dakhl, Southern Galala plateau. MERC Ain Shams Univ, Earth Sci Ser 7:49–62

    Google Scholar 

  • Tantawy AA (2006) Calcareous nannofossils of the Paleocene-Eocene transition at Qena Region, Central Nile Valley, Egypt. Micropaleontology 52(3):193–222

    Article  Google Scholar 

  • Tantawy AA, Ouda KH, von Salis K, Saad El-Din M (2000) Biostratigraphy of Paleocene sections in Egypt. GFF 122:163–164

    Article  Google Scholar 

  • Tantawy AA, Keller G, Adatte T, Stinnesbeck W, Kassab A, Schulte P (2001) Maastrichtian to Paleocene depositional environment of the Dakhla Formation, Western Desert, Egypt: sedimentology, mineralogy, and integrated micro- and macrofossil biostratigraphies. Cretaceous Res 22:795–827

    Article  Google Scholar 

  • Tremolada F, Bralower TJ (2004) Nannofossil assemblage fluctuations during the Paleocene-Eocene thermal maximum at Site 213 (Indian Ocean) and 401 (North Atlantic Ocean): Paleoceanographic implications. Mar Micropaleontol 52:107–116

    Article  Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific Publications, Oxford, UK, p 481

    Book  Google Scholar 

  • Tucker RD, Krogh TE, Ross RJ Jr, Williams SH (1990) Time-scale calibration by highprecision U–Pb zircon dating of interstratified volcanic ashes in the Ordovician and Lower Silurian stratotypes of Britain. Earth Planet Sci Lett 100:51–58

    Article  Google Scholar 

  • Weaver CE, Pollard LD (1973) The chemistry of clay minerals. Dev in Sediment, 15, Amsterdam, pp 213

  • Winland HD (1971) Diagenesis of carbonate grains in marine and meteoric waters. Ph.D. Thesis, Brown University, p 320

  • Wise SW, Covington JM, Ladner BC, Wei W (2004) Electronic calcareous nannofossils (version 3). Int Nannoplankton Assoc, CD-ROM Ser., 1

  • Wüst RAJ (1995) Geologisch-geotechnische Untersuchungen im Thebanischen Gebirge, Teil Süd, Luxor, Ägypten (M.Sc. thesis). Bern, Universität Bern

  • Wüst R, McLane J (2000) Rock deterioration in the Royal Tomb of Seti I, Valley of the Kings, Luxor, Egypt. Eng Geol 58:163–190

    Article  Google Scholar 

  • Yaalon DH, Wieder M (1976) Pedogenic palygorskite in some arid brown (calciorthid) soils of Isreal. Clays Clay Miner 11:73–80

    Google Scholar 

  • Yehia MA (1973) Some aspects of the structural geology and stratigraph of selected parts of the Nile basin of upper Egypt, Egypt, Ph.D. Thesis, Fac

  • Yehia MA (1986) Contribution to the geology of Gebel Gurnah, Luxor. Nile Valley Bull Geol Sur, Egypt

    Google Scholar 

  • Zittel K (1883) Beitrage zur Geologie und paleontology der lybyschen Wüste und der angrenzenden Gebeite von Aegypten. paleonto-graphica, 30, p 1-112

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossam A. Tawfik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tawfik, H.A., Zahran, E.K., Abdel-Hameed, A.T. et al. Mineralogy, petrography, and biostratigraphy of the Lower Eocene succession at Gebel El-Qurn, West Luxor, Southern Egypt. Arab J Geosci 4, 517–534 (2011). https://doi.org/10.1007/s12517-010-0158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-010-0158-6

Keywords

Navigation