Skip to main content
Log in

Assessment of tunnel instability—a numerical approach

تقييم لعدم الاستقرار في نفق بين النهج عددية

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

This paper outlines the application of numerical modeling to predict deformation and stability of tunnel to be excavated in Bansagar, M.P., India. To meet the ever-increasing demand of transportation, energy, and other infrastructure projects, a large volume of rock tunneling is being carried out throughout the world. The geotechnical properties along the route of the 1,800-m long tunnel in the Bansagar region of India have been studied. The rock mass rating and rock mass quality systems were employed for empirical rock mass quality determination. Numerical analysis for the stress–strain distribution of the tunnel excavation and support systems was also carried out. In order to simulate the excavation of tunnel (NATM) at a depth of 150 m below the ground , a series of finite element analyses using Mohr-coulomb elasto-plastic constitutive model has been carried out using PLAXIS 2D. The stability of tunnel has been analyzed, and stress pattern have been discussed.

الموجز

هذه الورقة الخطوط العريضة لتطبيق نماذج عددية للتنبؤ تشوه والاستقرار أن حفر النفق في Bansagar ، عضو البرلمان ، والهند. لتلبية الطلب المتزايد باستمرار على النقل والطاقة وغيرها من مشاريع البنية التحتية ، وكمية كبيرة من الصخور انفاق يجري الاضطلاع بها عبر العالم. فإن الجيوتقنية على طول الطريق من نفق طويل 1،800 متر في منطقة الهند Bansagar تمت دراسة. الكتلة الصخرية تصنيف (RMR) وكتلة صخرية الجودة (س) والنظم المستخدمة لالتجريبية تحديد نوعية الصخور الدمار. التحليل العددي للتوتر الإجهاد توزيع النفق الحفر ونظم الدعم أيضا القيام بها. لمحاكاة حفر نفق (NATM) على عمق 150m تحت الأرض ، سلسلة من التحليلات محدودة باستخدام عنصر مور - الكولون elasto - البلاستيك التأسيسية نموذج نفذت باستخدام PLAXIS 2D. استقرار النفق تم تحليلها ، والتأكيد على نمط نوقشت.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Anagnostou and Kovári (1994) The face stability of slurry shield-driven tunnels. Tunne Undergr Space Technol 9(2):165–174

    Article  Google Scholar 

  • Ayden O, Takagi T, Kawamoto T (1993) The squeezing potentials of rocks around tunnels: theory and prediction. Rock Mech Rock Eng 26(2):137–163

    Article  Google Scholar 

  • Barton N (2002) Some new Q-value correlations to assist in site characterization and tunnel design. Int J Rock Mech Min Sci 39(1):185–216

    Google Scholar 

  • Barton N, Grimstad E (1994) The Q-system following twenty years of application in NMT support selection. Felsbau 12(6):428–436

    Google Scholar 

  • Barton NR, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6(4):189–239

    Article  Google Scholar 

  • Bieniawski ZT (1974) Geomechanics classification of rock masses and its application in tunneling. Proc. 3rd Congress Int. Soc. Rock Mech. ISRM, Denver, USA, VIIA, pp 27–32

  • Bakker KJ, Leendertse WL, Jovanovic RS, van Oosterhout GPC (2000) monitoring: evaluation of stresses in the lining of the second heinenoord tunnel. Geotechnical aspects of underground construction in soft ground. Balkema, Tokyo, pp 197–202

    Google Scholar 

  • Brinkgreve RBJ, Vermer PA (1998) PLAXIS, Finite element code for soil and rock analyses, ver 7.0. A.A. Balkema, Rotterdam, Broodfield

  • Dawson EM, Roth WH (1999) FLAC and numerical modeling in geomechanics. Balkema, Detournay & Hart

    Google Scholar 

  • Guglielmetti V, Grasso P, Mahtab A, Xu S (2008) Mechanized tunnelling in urban areas—design methodology and construction control, Taylor and Francis, pp 507–515

  • Hoek E, Brown ET (1980) Underground excavations in rock. Institute of Mining and Metallurgy, London

    Google Scholar 

  • ISRM (1980) Suggested methods for determination of compressive strength. Int. Soc. Rock Mech. Comm. Lab. Tests

  • Jancsecz S, Steiner W (1994) Face support for a large mix-shield in heterogeneous ground conditions. Tunneling 94:531–550

    Google Scholar 

  • Lauro CA, Assis AP (1998) Analysis of ground-support interaction for underground excavations in rock. World Tunnel Congress ‘98 on Tunnels and Metropolises, Balkema, Sao Paulo, Brazil, pp 321–327

    Google Scholar 

  • Mair RJ (1998) Geotechnical aspects of design criteria for bored tunnelling in soft ground. World Tunnel Congress ‘98 on Tunnels and Metropolises. Balkema, Sao Paulo, Brazil, pp 183–199

  • Pellet F, Verma AK (2006a) The effect of excavation rate on tunnel stability, 2nd Int. Congress on Computational Mechanics and Simulation (ICCMS 06), Indian Institute of Technology Guwahati, India, CDROM

  • Pellet F, Verma AK (2006b) The effect of excavation rate on tunnel stability, Technical session 3H, A168, 2nd Int. Congress on computational Mechanics and Simulation(ICCMS 06)

  • Shirlaw JN (1996) Ground treatment for bored tunnels. Geotechnical Aspects of Underground Construction in Soft Ground. Balkema, London, UK, pp 19–25

    Google Scholar 

  • Soga K, Bolton MD, Au KKA, Komiya K, Hamelin JP, van Cotthem A, Buchet G, Michel JP (2000) Development of compensation grouting modelling and control system. In: Geotechnical aspects of underground construction in soft ground (1999) Balkema, Tokyo, Japan, pp. 425–430

  • Sitharam TG, Maji VB, Verma AK (2005) “Equivalent continuum analyses of jointed rockmass”, 40th U.S. Symposium on Rock Mechanics (USRMS): Rock mechanics for energy, mineral and infrastructure development in the Northern Regions, held in Anchorage, Alaska, June 25–29

  • Sitharam TG, Maji VB, Verma AK (2007) Practical equivalent continuum model for simulation of jointed rock mass using FLAC-3D. Int J Geomech 7(5):389–395

    Article  Google Scholar 

  • Singh TN, Singh VK (1999) Effect of confined and unconfined stress on jointed rocks. Ind Jol Engg Mater Sci 65:108–205

    Google Scholar 

  • Singh TN, Verma AK (2007) Evaluating the slope instability of the Amiya Slide, Rock Mechanics. Meeting society challenges and demand (edited by Eberhardt, Stead & Morrison, Taylor & Francis Pub. London), pp 993–998

  • Sozio LE (1998) General report: urban constraints on underground works. World Tunnel Congress ‘98 on Tunnels and Metropolises, Balkema, Sao Paulo, Brazil, pp 879–897

    Google Scholar 

  • Ueda A, Matsumoto S, Igarashi M, Nakagawa M (1998) ‘Twist tunnelling’ by the multiface shield method. Tunnels and Metropolises, Balkelkema, Sao Paulo, Brazil, pp 643–648

    Google Scholar 

  • Van der Horst EJ, Blom CBM, Jovanovic PS, Van der Veen C (1999) Influence of packing materials on tunnel lining behavior. In: Proceedings of the World Tunnel Congress 99, Challenges for the 21st Century. Balkema, Oslo, Norway, pp 363–368

  • Xu Y, Sun D, Sun J, Fu D, Dong P (2003) Soil disturbance of Shanghai silty clay during EPB tunnelling. Tunn Undergr Space Technol 18(2003):537–545

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Verma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, A.K., Singh, T.N. Assessment of tunnel instability—a numerical approach. Arab J Geosci 3, 181–192 (2010). https://doi.org/10.1007/s12517-009-0066-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-009-0066-9

Keywords

Navigation