Skip to main content
Log in

Interpretation of some magnetic bodies using neural networks inversion

تفسيرات بعض الاجسام المغناطيسية بالاسلوب التعاكسي مستعملا الشبكات العصبية

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Magnetic surveys have been used for mineral exploration where different data processing techniques were used to derive the parameters of causative targets. In this respect, the neural network (NN) technique was used to estimate the magnetic causative target parameters. Examples of NN inversion have been tested on synthetic examples where the NN was trained well using forward models of the vertical magnetic effect of a vertical sheet and a horizontal circular cylinder. Specifically, modular neural network (MNN) inversion has been used for the parameter estimation of the causative targets, where the sigmoid function was used as the activation function. The effect of random noise and the error estimation of the horizontal location have been analyzed. When NN is applied to real data, it estimates successfully the parameters of the causative targets such as burial depths, magnetic constants, and angle of polarization. Hilbert transform has been used to locate the source origin, which is important for the NN inversion. This approach has more advantages than the conventional data inversions in terms of its efficiency and flexibility. It also gives fast solutions. The MNN approach has been applied to the Kursk and Manjampalli anomalies, where the results were shown to be in good agreement with the other techniques published in the literature.

Abstract

تستعمل المساحة المغناطیسیة للاستكشاف عن المعادن باستخدام الطرق المختلفة لمعالجة المعلومات ومن ثم لاستنباط المعاملات للاھداف المسببة للمغناطیسیة منھا.وفي ھذا الاطار استخدمت الشبكة العصبیة لتقدیر تلك المعاملات. وقد تم اختبار الحلول التعاكسیة على الامثلة المصطنعة للاجسام المسببة للمغناطیسیة وذلكباستخدام الشبكة العصبیة بعد تدریبھا تدریبا جیدا على النماذج المسببة للمغناطیسیة العمودیة لصفیحة رأسیة واسطوانیة افقیة ذات مقطع دائري.وقد استعملت الشبكةالعصبیة التي تمت معایرتھا للقیام بالحل التعاكسي لتقدیر المعلومات عن كما تم دراسة وتحلیل كلا من تاثیر .(S) الاجسام المسببة للمغناطیسیة مع استخدام الدالة المنشطة على ھیئة حرف الضوضاء العشوائیة والخطأ في تحدید المواقع الافقیة للاھداف المسببة للمغناطیسة. وقد تم بنجاح تطبیق الحل التعاكسي على البیانات الحقلیة باستخدام الشبكة العصبیة في تقدیر المعاملات للاھداف المسببة للمغناطیسیة كالاعماق والثوابت المغناطیسیة وزوایا الاستقطاب. واستخدم تحویل ھلبرت المھم لتحدید الموقع الافقي للاھداف المسببة للمغناطیسیة. أن الحلالتعاكسي باستخدام الشبكة العصبیة لھو افضل حل اذا ماقورن بالحلول التعاكسیة الاخرى وذلك من حیث فعالیتة ومرونتة وسرعة الحصول على النتائج منھ.فطریقة الحل التعاكسي باستخدام الشبكة العصبیة قد طبقت على كل من شاذة كیرسك وشاذة مانجمبالي، حیث اظھرت النتائجتوافقاجیدا مع نتائجالتقنیات الاخرى المنشورة.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Barbosa VCF, Silva JBC, Medeiros WE (1999) Stability analysis and improvement of structural index estimation in Euler deconvolution. Geophysics 64:48–60

    Article  Google Scholar 

  • Baum EB, Haussler D (1989) What size network gives valid generalization?. Neural Comp 1:151–160

    Article  Google Scholar 

  • Bescoby DJ, Cawley GC, Chroston PN (2006) Enhanced interpretation of magnetic survey data from archaeological sites using artificial neural networks. Geophysics 71:H45–H53

    Article  Google Scholar 

  • Bishop CM (1995) Training with noise is equivalent to Tikhonova regularization. Neural Comp 7:108–116

    Article  Google Scholar 

  • Calderόn-Macías C, Sen MK, Stoffa PL (2000) Artificial neural networks for parameter estimation in geophysics. Geophys Prospect 48:21–47

    Article  Google Scholar 

  • Dondurur D, Pamukçu OA (2003) Interpretation of magnetic anomalies from dipping dike model using inverse solution, power spectrum and Hilbert transform methods. J Balkan Geophys Soc 6:127–136

    Google Scholar 

  • El-Kaliouby H (2001) Extracting IP parameters from TEM data. In: Poulton MM (ed) Computational neural networks for geophysical data processing. Pergamon, Oxford chapter 17

    Google Scholar 

  • El-Kaliouby H, Poulton M (1999) Inversion of coincident loop TEM data for layered polarizabe ground using neural networks. Society of Exploration Geophysicists (SEG) 69th annual meeting, Houston, 31 October–5 November 1999

  • El-Qady G, Ushijima K (2001) Inversion of DC resistivity data using neural networks. Geophys Prospect 49:417–430

    Article  Google Scholar 

  • Fossati M, Zerilli A, Ronchini G, Apollono B (1992) Lineament analysis for potential field data using neural network: 62nd Annual International Meeting, SEG, Expanded Abstracts: 6–9

  • Grant FS, West GF (1965) Interpretation theory in applied geophysics. McGraw-Hill, New York, pp 324–337

    Google Scholar 

  • Guo Y, Hansen R, Harthil N (1992) Feature recognition from potential fields using neural networks. 62nd Annual International Meeting, SEG, Expanded Abstracts, 1–5

  • Helle HB, Bhatt A, Ursin B (2001) Porosity and permeability prediction from wireline logs using artificial neural networks: A North Sea case study. Geophys Prospect 49:431–444

    Article  Google Scholar 

  • Johnson WW (1969) A least squares method of interpreting magnetic anomalies caused by two dimensional structures. Geophysics 34:65–74

    Article  Google Scholar 

  • Khurana KK, Rao SVS, Pal PC (1981) Frequency domain least squares inversion of thick dike magnetic anomalies using Marquardt algorithm. Geophysics 46:1745–1748

    Article  Google Scholar 

  • Macias C, Sen M, Stoffa P (2000) Artificial neural networks for parameter estimation in geophysics. Geophys Prospect 48:21–47

    Article  Google Scholar 

  • Mohen NL, Sundararajan N, Seshagiri Rao SV (1982) Interpretation of some two-dimensional magnetic bodies using Hilbert transform. Geophysics 47:376–387

    Article  Google Scholar 

  • Nabighian MN (1972) The analytic signal of two-dimensional magnetic bodies with polygonal cross-section, its properties and use for automated anomaly interpretation. Geophysics 37:507–512

    Article  Google Scholar 

  • Poulton MM (2001) Computational neural networks for geophysical data processing. Pergamon, Oxford

    Google Scholar 

  • Poulton MM (2002) Neural networks as an intelligence amplification tool: A review of applications. Geophysics 67:979–993

    Article  Google Scholar 

  • Poulton MM, Sternberg BK, Glass CE (1992a) Location of subsurface targets in geophysical data using neural networks. Geophysics 57:1534–1544

    Article  Google Scholar 

  • Poulton MM, Sternberg BK, Glass CE (1992b) Neural network pattern recognition of subsurface EM images. J Appl Geophys 29:21–36

    Article  Google Scholar 

  • Radhakrishna Murthy IV, Vesweswsra Rao C, Gobalakrishna G (1980) A gradient method for interpreting magnetic anomalies due to horizontal circular cylinder, infinite dikes and vertical steps. Proc Indian Acad Sci Earth Planet Sci 89:31–42

    Google Scholar 

  • Raiche A (1991) A pattern recognition approach to geophysical inversion using neural nets. Geophys J Int 105:629–648

    Article  Google Scholar 

  • Rao BSR, Murthy IVR, Rao CV (1973) Two methods for computer interpretation of magnetic anomalies of dike. Geophysics 38:710–718

    Article  Google Scholar 

  • Spichak V, Popova I (2000) Artificial neural networkinversion of magnetotelluric data in terms of three-dimensional earth macrparameters. Geophys J Int 142:15–26

    Article  Google Scholar 

  • Sudhakar KS, Rao RPR, Murthy RIV (2004) Modified Werner deconvolution for iversion of magnetic anomalies of horizontal circular cylinders. J Ind Geophys Union 8:179–183

    Article  Google Scholar 

  • Thomas JB (1969) An introduction to statistical communication theory. Wiley, New York, pp 639–657

    Google Scholar 

  • Ucan ON, Bilgili E, Albora AM (2002) Magnetic anomaly separation using genetic cellular neural networks. J Balkan Geophys Soc 5:65–70

    Google Scholar 

  • Van der Baan M, Jutten C (2000) Neural networks in geophysical applications. Geophysics 65:1032–1047

    Article  Google Scholar 

  • Werner S (1953) Interpretation of magnetic anomalies at sheet like bodies. Ser. C. 508. Sveriges Geologiska Undersok, Stockholm

    Google Scholar 

  • Won IJ (1981) Application of Gauss’s method to magnetic anomalies of dipping dikes. Geophysics 46:211–215

    Article  Google Scholar 

  • Zhang Q, Gupta K (2000) Neural networks for RF and microwave design. Artech House, London

    Google Scholar 

  • Zhang L, Poulton MM, Wang T (2002) Borehole electrical resistivity modeling using neural networks. Geophysics 67:1790–1797

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour A. Al-Garni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Garni, M.A. Interpretation of some magnetic bodies using neural networks inversion. Arab J Geosci 2, 175–184 (2009). https://doi.org/10.1007/s12517-008-0026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-008-0026-9

Keywords

Navigation