Skip to main content

Advertisement

Log in

New Role of Echocardiography in the Cath Lab: Novel Approaches of Peri-Interventional 3D Echocardiography

  • Echocardiography (T Buck, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Interventional techniques for percutaneous treatment of structural heart disease have become an important option for patients ineligible for conventional cardiovascular surgery. Three-dimensional echocardiography plays an essential role not only for patient selection but also for peri-interventional guidance. This review aims to describe novel approaches for the application of three-dimensional echocardiography during transcatheter interventions in the context of the current literature and current recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Fontes-Carvalho R, Sampaio F, Ribeiro J, et al. Three-dimensional intracardiac echocardiography: a new promising imaging modality to potentially guide cardiovascular interventions. Eur Heart J Cardiovasc Imaging. 2013. doi:10.1093/ehjci/jet047. First approach to use 3D ICE during cardiovascular interventions. So far, 3D capablities were not available for ICE.

    PubMed  Google Scholar 

  2. •• Tsang W, Lang RM, Kronzon I. Role of real-time three dimensional echocardiography in cardiovascular interventions. Heart. 2011;97:850–7. Most recent review upon the adressed issue written by absolute experts in the field of 3D echocardiography.

    Article  PubMed  Google Scholar 

  3. Balzer J, Kelm M, Kuhl HP. Real-time three-dimensional transoesophageal echocardiography for guidance of non-coronary interventions in the catheter laboratory. Eur J Echocardiog. 2009;10:341–9.

    Article  Google Scholar 

  4. Moukabary T, Faletra FF, Kronzon I, et al. Three-dimensional echocardiography in the electrophysiology laboratory. Echocardiography. 2012;29:117–22.

    Article  PubMed  Google Scholar 

  5. •• Zamorano JL, Badano LP, Bruce C, et al. EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for valvular heart disease. Eur Heart J. 2011;32:2189–214. International recommendations focussing on the benefits of 3D echocardiography during cardiovascular interventions in the cath lab.

    Article  PubMed  Google Scholar 

  6. Balzer J. Echocardiography during transcatheter interventions: new developments. Herz. 2013;38:26–32.

    Article  PubMed  CAS  Google Scholar 

  7. Butera G, Carminati M, Chessa M, et al. Transcatheter closure of perimembranous ventricular septal defects: early and long-term results. J Am Coll Cardiol. 2007;50:1189–95.

    Article  PubMed  Google Scholar 

  8. Varma C, Benson LN, Warr MR, et al. Clinical outcomes of patent foramen ovale closure for paradoxical emboli without echocardiographic guidance. Cathet Cardiovasc Interven. 2004;62:519–25.

    Article  Google Scholar 

  9. Schubert S, Kainz S, Peters B, et al. Interventional closure of atrial septal defects without fluoroscopy in adult and pediatric patients. Clin Res Cardiol. 2012;101:691–700.

    Article  PubMed  Google Scholar 

  10. Balzer J, Van Hall S, Rassaf T, et al. Feasibility, safety, and efficacy of real-time three-dimensional transoesophageal echocardiography for guiding device closure of interatrial communications: initial clinical experience and impact on radiation exposure. Eur J Echocardiog. 2010;11:1–8.

    Article  Google Scholar 

  11. Faletra FF, Nucifora G, Ho SY. Imaging the atrial septum using real-time three-dimensional transesophageal echocardiography: technical tips, normal anatomy, and its role in transseptal puncture. J Am Soc Echocardiog. 2011;24:593–9.

    Article  Google Scholar 

  12. Garcia-Fuertes D, Mesa-Rubio D, Ruiz-Ortiz M, et al. Monitoring complex secundum atrial septal defects percutaneous closure with real time three-dimensional echocardiography. Echocardiography. 2012;29:729–34.

    Article  PubMed  Google Scholar 

  13. Charakida M, Qureshi S, Simpson JM. 3D echocardiography for planning and guidance of interventional closure of VSD. JACC Cardiovasc Imaging. 2013;6:120–3.

    Article  PubMed  Google Scholar 

  14. Reddy VY, Doshi SK, Sievert H, et al. Percutaneous left atrial appendage closure for stroke prophylaxis in patients with atrial fibrillation: 2.3-year follow-up of the PROTECT AF (Watchman Left Atrial Appendage System for Embolic Protection in Patients with Atrial Fibrillation) Trial. Circulation. 2013;127:720–9.

    Article  PubMed  Google Scholar 

  15. Nucifora G, Faletra FF, Regoli F, et al. Evaluation of the left atrial appendage with real-time 3-dimensional transesophageal echocardiography: implications for catheter-based left atrial appendage closure. Circ Cardiovasc Imaging. 2011;4:514–23.

    Article  PubMed  Google Scholar 

  16. Perk G, Biner S, Kronzon I, et al. Catheter-based left atrial appendage occlusion procedure: role of echocardiography. Eur Heart J Cardiovasc Imaging. 2012;13:132–8.

    Article  PubMed  Google Scholar 

  17. Kumar V, Nanda NC. Is it time to move on from two-dimensional transesophageal to three-dimensional transthoracic echocardiography for assessment of left atrial appendage? Review of existing literature. Echocardiography. 2012;29:112–6.

    Article  PubMed  Google Scholar 

  18. Ionescu A, Fraser AG, Butchart EG. Prevalence and clinical significance of incidental paraprosthetic valvar regurgitation: a prospective study using transoesophageal echocardiography. Heart. 2003;89:1316–21.

    Article  PubMed  CAS  Google Scholar 

  19. Kliger C, Eiros R, Isasti G, et al. Review of surgical prosthetic paravalvular leaks: diagnosis and catheter-based closure. Eur Heart J. 2013;34:638–49.

    Article  PubMed  Google Scholar 

  20. Ruiz CE, Jelnin V, Kronzon I, et al. Clinical outcomes in patients undergoing percutaneous closure of periprosthetic paravalvular leaks. J Am Coll Cardiol. 2011;58:2210–7.

    Article  PubMed  Google Scholar 

  21. Kronzon I, Sugeng L, Perk G, et al. Real-time 3-dimensional transesophageal echocardiography in the evaluation of post-operative mitral annuloplasty ring and prosthetic valve dehiscence. J Am Coll Cardiol. 2009;53:1543–7.

    Article  PubMed  Google Scholar 

  22. Krishnaswamy A, Kapadia SR, Tuzcu EM. Percutaneous paravalvular leak closure- imaging, techniques and outcomes. Circulation J. 2013;77:19–27.

    Article  Google Scholar 

  23. Cappelli F, Del Bene MR, Santoro G, et al. The challenge of integrated echocardiographic approach in percutaneous closure of paravalvular leak. Echocardiography. 2011;28:E168–71.

    Article  PubMed  Google Scholar 

  24. Biner S, Kar S, Siegel RJ, et al. Value of color Doppler three-dimensional transesophageal echocardiography in the percutaneous closure of mitral prosthesis paravalvular leak. Am J Cardiol. 2010;105:984–9.

    Article  PubMed  Google Scholar 

  25. Nkomo VT, Gardin JM, Skelton TN, et al. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368:1005–11.

    Article  PubMed  Google Scholar 

  26. Makkar RR, Fontana GP, Jilaihawi H, et al. Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. N Engl J Med. 2012;366:1696–704.

    Article  PubMed  CAS  Google Scholar 

  27. Mauri L, Foster E, Glower DD, et al. Four-year results of a randomized controlled trial of percutaneous repair versus surgery for mitral regurgitation. J Am Coll Cardiol. 2013;23:317–28.

    Article  Google Scholar 

  28. Delgado V, Kapadia S, Marsan NA, et al. Multimodality imaging before, during, and after percutaneous mitral valve repair. Heart. 2011;97:1704–14.

    Article  PubMed  Google Scholar 

  29. Delgado V, Kapadia S, Schalij MJ, et al. Transcatheter aortic valve implantation: implications of multimodality imaging in patient selection, procedural guidance, and outcomes. Heart. 2012;98:743–54.

    Article  PubMed  Google Scholar 

  30. Vahanian A, Alfieri O, Andreotti F, et al. Guidelines on the management of valvular heart disease (version 2012): The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2012;33:2451–96.

    Article  PubMed  Google Scholar 

  31. Bloomfield GS, Gillam LD, Hahn RT, et al. A practical guide to multimodality imaging of transcatheter aortic valve replacement. JACC; Cardiovascular Imaging. 2012;5:441–55.

    Article  PubMed  Google Scholar 

  32. Messika-Zeitoun D, Serfaty JM, Brochet E, et al. Multimodal assessment of the aortic annulus diameter: implications for transcatheter aortic valve implantation. J Am Coll Cardiol. 2010;55:186–94.

    Article  PubMed  Google Scholar 

  33. Ng AC, Delgado V, Van Der Kley F, et al. Comparison of aortic root dimensions and geometries before and after transcatheter aortic valve implantation by 2- and 3-dimensional transesophageal echocardiography and multislice computed tomography. Circ Cardiovasc Imaging. 2010;3:94–102.

    Article  PubMed  Google Scholar 

  34. Bagur R, Rodes-Cabau J, Doyle D, et al. Usefulness of TEE as the primary imaging technique to guide transcatheter transapical aortic valve implantation. JACC Cardiovascular Imaging. 2011;4:115–24.

    Article  PubMed  Google Scholar 

  35. Smith LA, Monaghan MJ. Monitoring of procedures: peri-interventional echo assessment for transcatheter aortic valve implantation. Eur Heart J Cardiovasc Imaging. 2013;14:840–50.

    Article  PubMed  Google Scholar 

  36. Smith LA, Dworakowski R, Bhan A, et al. Real-time three-dimensional transesophageal echocardiography adds value to transcatheter aortic valve implantation. J Am Soc Echocardiog. 2013;26:359–69.

    Article  Google Scholar 

  37. Gripari P, Ewe SH, Fusini L, et al. Intraoperative 2D and 3D transoesophageal echocardiographic predictors of aortic regurgitation after transcatheter aortic valve implantation. Heart. 2012;98:1229–36.

    Article  PubMed  Google Scholar 

  38. Biner S, Perk G, Kar S, et al. Utility of combined two-dimensional and three-dimensional transesophageal imaging for catheter-based mitral valve clip repair of mitral regurgitation. J Am Soc Echocardiog. 2011;24:611–7.

    Article  Google Scholar 

  39. Teufel T, Steinberg DH, Wunderlich N, et al. Percutaneous mitral valve repair with the MitraClip(R) system under deep sedation and local anaesthesia. EuroIntervention. 2012;8:587–90.

    Article  PubMed  Google Scholar 

  40. Faletra FF, Pedrazzini G, Pasotti E, et al. Role of real-time three dimensional transoesophageal echocardiography as guidance imaging modality during catheter based edge-to-edge mitral valve repair. Heart. 2013;99:1204–15.

    Article  PubMed  Google Scholar 

  41. Swaans MJ, Post MC, Van Den Branden BJ, et al. A complicated transseptal puncture during Mitraclip procedure: saved by 3D-TEE. Eur J Echocardiog. 2011;12:E45.

    Article  CAS  Google Scholar 

  42. Armstrong EJ, Rogers JH, Swan CH, et al. Echocardiographic predictors of single versus dual MitraClip device implantation and long-term reduction of mitral regurgitation after percutaneous repair. Cathet Cardiovasc Interven. 2012. doi:10.1002/ccd.24645.

    Google Scholar 

  43. Eng MH, Salcedo EE, Kim M, et al. Implementation of real-time three-dimensional transesophageal echocardiography for mitral balloon valvuloplasty. Cathet Cardiovasc Interven. 2013. doi:10.1002/ccd.25052.

    Google Scholar 

  44. Altiok E, Hamada S, Brehmer K, et al. Analysis of procedural effects of percutaneous edge-to-edge mitral valve repair by 2D and 3D echocardiography. Circ Cardiovasc Imaging. 2012;5:748–55.

    Article  PubMed  Google Scholar 

  45. Schmidt FP, Von Bardeleben RS, Nikolai P, et al. Immediate effect of the MitraClip(R) procedure on mitral ring geometry in primary and secondary mitral regurgitation. Eur Heart J Cardiovasc Imaging. 2013;14:851–7.

    Article  PubMed  Google Scholar 

  46. Plicht P, Janosi RA, Konorza TFM, Buck T. Transesophageal RT3D color Doppler vena contracta area measurement before and after percutaneous edge-to-edge-repair for mitral regurgitation. Clin Res Cardiol. 2010;99 Suppl 1:V87.

    Google Scholar 

  47. Van Der Hoeven BL, Schalij MJ, Delgado V. Multimodality imaging in interventional cardiology. Nat Rev Cardiol. 2012;9:333–46.

    Article  PubMed  Google Scholar 

  48. Clegg SDC, Salcedo E, Quaife R, Carroll J. Integrated 3D echo-X-ray image guidance for structural heart interventions. J Am Coll Cardiol. 2012;59:E326.

    Article  Google Scholar 

  49. Gao G, Penney G, Ma Y, et al. Registration of 3D trans-esophageal echocardiography to X-ray fluoroscopy using image-based probe tracking. Med Image Analy. 2012;16:38–49.

    Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Jan Balzer received honoraria for lectures on international cardiovascular conventions from Philips Healthcare. J. Balzer had travel/accommodations expenses covered or reimbursed by Philips Healthcare. Silke van Hall declares that she has no conflict of interest. Yang-Chul Böring declares that he has no conflict of interest. Malte Kelm declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Balzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balzer, J., van Hall, S., Böring, YC. et al. New Role of Echocardiography in the Cath Lab: Novel Approaches of Peri-Interventional 3D Echocardiography. Curr Cardiovasc Imaging Rep 6, 445–453 (2013). https://doi.org/10.1007/s12410-013-9229-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-013-9229-x

Keywords

Navigation