Skip to main content
Log in

Assessment of Plaque Composition with Near-Infrared Spectroscopy

  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Histopathological examination of culprit plaques in sudden coronary death has long suggested that accurate in vivo determination of plaque composition may be of equal or greater importance to future coronary event risk assessment as plaque cross-sectional size or volume. Intracoronary near-infrared spectroscopy (NIRS) was developed to detect the most prominent compositional feature of a thin-capped fibroatheroma—the presence of a lipid core. The need for invasive, focal coronary imaging techniques, the added value of compositional measures, and the applicability and principles of operation of intracoronary NIRS are described. Additionally, a combination device with NIRS and simultaneous, co-registered intravascular ultrasound (IVUS) is described, which gives complementary structural and compositional measures. The identification and morphological assessment of lipid core plaque with NIRS-IVUS has potential to improve the safety of stenting, including optimization of length of vessel to stent, assurance of adequate stent deployment, and identification of lipid-core lesions at higher risk of distal embolization possibly leading to effective utilization of distal embolic protection devices in the native coronaries. The NIRS-IVUS device also has promise in the identification of vulnerable plaque, which may lead to strategies to prevent future coronary events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Serruys PW, Morice M, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360(10):961–72.

    Article  PubMed  CAS  Google Scholar 

  2. Boden WE, O’Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–16.

    Article  PubMed  CAS  Google Scholar 

  3. Shaw LJ, Berman DS, Maron DJ, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) Trial Nuclear Substudy. Circulation. 2008;117(10):1283–91.

    Article  PubMed  Google Scholar 

  4. •• Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. PROSPECT Investigators. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35. This prospective study in humans identified vulnerable plaques employing IVUS with VH.

    Article  PubMed  CAS  Google Scholar 

  5. Goldstein JA, Demetriou D, Grines CL, Pica M, Shoukfeh M, O’Neill WW. Multiple unstable plaques in patients with acute myocardial infarction. N Engl J Med. 2000;343:915–22.

    Article  PubMed  CAS  Google Scholar 

  6. •• Kolodgie FD, Burke AP, Farb A, Gold HK, Yuan J, Narula J, et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol. 2001;16:285–92. Pathologic description of TCFA, one of the key lesions felt to be a vulnerable plaque.

    Article  PubMed  CAS  Google Scholar 

  7. Heusch G, Kleinbongard P, Böse D, Levkau B, Haude M, Schulz R, et al. Coronary microembolization: from bedside to bench and back to bedside. Circulation. 2009;120(18):1822–36.

    Article  PubMed  Google Scholar 

  8. Yamagishi M, Terashima M, Awano K, Kijima M, Nakatani S, Daikoku S, et al. Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol. 2000;35:106–11.

    Article  PubMed  CAS  Google Scholar 

  9. Fujii K, Kobayashi Y, Mintz GS, Takebayashi H, Dangas G, Moussa L, et al. Intravascular ultrasound assessment of ulcerated ruptured plaques. A comparison of culprit and non-culprit lesions of patients with acute coronary syndromes and lesions in patients without acute coronary syndromes. Circulation. 2003;108:2473–8.

    Article  PubMed  Google Scholar 

  10. Hong MK, Mintz GS, Lee CW, Lee BK, Yang TH, Kim YH, et al. The Site of Plaque Rupture in Native Coronary Arteries: A Three-Vessel Intravascular Ultrasound Analysis. J Am Coll Cardiol. 2005;46:261–5.

    Article  PubMed  Google Scholar 

  11. Maehara A, Mintz GS, Weissman NJ. Advances in intravascular imaging. Circ Cardiovasc Interv. 2009;5:482–90.

    Google Scholar 

  12. • Thim T, Hagnesen MK, Wallace-Bradley D, Granada JF, Kaluza GL, Drouet L, et al. Unreliable assessment of necrotic core by virtual histology intravascular ultrasound in porcine coronary artery disease. Circ Cardiovasc Imaging. 2010;3:384–91. Histopathologic study suggesting limitations of IVUS-VH.

    Article  PubMed  Google Scholar 

  13. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111:1551–5.

    Article  PubMed  Google Scholar 

  14. Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50:933–9.

    Article  PubMed  Google Scholar 

  15. •• Gardner CM, Tan H, Hull EL, Lisauskas JB, Sum ST, Meese TM, et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imaging. 2008;1(5):638–48. Autopsy study validating accuracy of Lipiscan for detection of LCP.

    Article  PubMed  Google Scholar 

  16. •• Waxman S, Dixon SR, L’Allier P, Moses JW, Petersen JL, Cutlip D, et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging. 2009;2(7):858–68. Clinical study of Lipiscan catheter documenting spectral signals in humans similar to those validated by histopathologic proof of LCP.

    Article  PubMed  Google Scholar 

  17. • Schultz CJ, Serruys PW, van der Ent M, Ligthart J, Mastik F, Garg S, et al. First-in-man clinical use of combined near-infrared spectroscopy and intravascular ultrasound: a potential key to predict distal embolization and no-reflow? J Am Coll Cardiol. 2010;56(4):314. First use of combined multimodality NIRS-IVUS catheter in humans.

    Article  PubMed  Google Scholar 

  18. Madden SP, Sum ST, Muller JE. Assessment of Plaque Composition with Near Infrared Spectroscopy. In: Escaned J, Serruys PW, editors. Coronary Artery Stenosis: Imaging, Structure and Physiology. Toulouse, France: Europa Edition, 2010. p. 245–61.

  19. Sum S, Madden S, Hendricks M, Chartier S, Muller J. Near-infrared spectroscopy for the detection of lipid core coronary plaques. Curr Cardiovasc Imaging Rep. 2009;2(4):307–15.

    Article  Google Scholar 

  20. •• Goldstein JA, Grines C, Fischell T, Virmani R, Rizik D, Muller J, et al.. Coronary embolization following balloon dilation of lipid-core plaques. JACC Cardiovasc Imaging. 2009;2(12):1420–4. “Connecting the dots” between LCP and distal embolization complications.

    Article  PubMed  Google Scholar 

  21. Mauri L, Rogers C, Baim DS. Devices for distal protection during percutaneous coronary revascularization. Circulation. 2006;113(22):2651–6.

    Article  PubMed  Google Scholar 

  22. •• Prasad A, Singh M, Lerman A, Lennon RJ, Holmes DR Jr, Rihal CS. Isolated elevation in troponin T after percutaneous coronary intervention is associated with higher long-term mortality. J Am Coll Cardiol. 2006;48(9):1765–70. Clinical implications of periprocedural MI.

    Article  PubMed  CAS  Google Scholar 

  23. • Selvanayagam JB, Porto I, Channon K, Petersen SE, Francis JM, Neubauer S, et al. Troponin elevation after percutaneous coronary intervention directly represents the extent of irreversible myocardial injury: insights from cardiovascular magnetic resonance imaging. Circulation. 2005;111(8):1027–32. Myocardial injury due to periprocedural MI.

    Article  PubMed  CAS  Google Scholar 

  24. Mehran R, Dangas G, Mintz GS, Lansky AJ, Pichard AD, Satler LF, et al. Atherosclerotic plaque burden and CK-MB enzyme elevation after coronary interventions: intravascular ultrasound study of 2256 patients. Circulation. 2000;101(6):604–10.

    PubMed  CAS  Google Scholar 

  25. Hong YJ, Mintz GS, Kim SW, Lee SY, Okabe T, Pichard AD, et al. Impact of plaque composition on cardiac troponin elevation after percutaneous coronary intervention: an ultrasound analysis. JACC Cardiovasc Imaging. 2009;2(4):458–68.

    Article  PubMed  Google Scholar 

  26. • Kotani J, Nanto S, Mintz GS, Kitakaze M, Ohara T, Morozumi T, et al. Plaque gruel of atheromatous coronary lesion may contribute to the no-reflow phenomenon in patients with acute coronary syndrome. Circulation. 2002;106(13):1672–7. Distal embolization of lipid contents leading to “no-reflow”.

    Article  PubMed  Google Scholar 

  27. Kawamoto T, Okura H, Koyama Y, Toda I, Taguchi H, Tamita K, et al. The relationship between coronary plaque characteristics and small embolic particles during coronary stent implantation. J Am Coll Cardiol. 2007;50(17):1635–40.

    Article  PubMed  Google Scholar 

  28. Uetani T, Amano T, Ando H, Yokoi K, Arai K, Kato M, et al. The correlation between lipid volume in the target lesion, measured by integrated backscatter intravascular ultrasound, and post-procedural myocardial infarction in patients with elective stent implantation. Eur Heart J. 2008;29(14):1714–20.

    Article  PubMed  Google Scholar 

  29. Maini B, Brilakis ES, Kim M, Hendricks MJ, Madden SP, Sum ST, et al. Association of large lipid core plaque detected by near infrared spectroscopy with post percutaneous coronary intervention myocardial infarction. J Am Coll Cardiol. 2010;55;A179.E1672.

  30. • Liu X, Tsujita K, Maehara A, Mintz GS, Weisz G, Dangas GD, et al. Intravascular ultrasound assessment of the incidence and predictors of edge dissections after drug-eluting stent implantation. JACC Cardiovasc Interv. 2009;2(10):997–1004. Potential benefits of IVUS to guide optimal stenting.

    Article  PubMed  Google Scholar 

  31. Oemrawsingh PV, Mintz GS, Schalij MJ, et al. Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenoses: final results of a randomized comparison with angiographic guidance (TULIP Study). Circulation. 2003;107(1):62–7.

    Article  PubMed  Google Scholar 

  32. Nakazawa G, Otsuka F, Nakano M, Vorpahl M, Yazdani SK, Ladich E, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol. 2011;57(11):1314–22.

    Article  PubMed  CAS  Google Scholar 

  33. Farb A, Sangiorgi G, Carter AJ, Walley VM, Edwards WD, Schwartz RS, et al. Pathology of acute and chronic coronary stenting in humans. Circulation. 1999;99(1):44–52.

    PubMed  CAS  Google Scholar 

  34. • Sakhuja R, Suh WM, Jaffer FA, Jang IK. Residual Thrombogenic Substrate After Rupture of a Lipid-Rich Plaque: Possible Mechanism of Acute Stent Thrombosis? Circulation. 2010;122(22):2349–50. Potential risk of subacute stent thrombosis due to uncovered LCP.

    Article  PubMed  Google Scholar 

  35. Waxman S, Freilich MI, Suter MJ, Shishkov M, Bilazarian S, Virmani R, et al. A case of lipid core plaque progression and rupture at the edge of a coronary stent: elucidating the mechanisms of drug-eluting stent failure. Circ Cardiovasc Interv. 2010;3(2):193–6.

    Article  PubMed  Google Scholar 

Download references

Disclosure

J. A. Goldstein: consultant to InfraReDx Inc. with stock/stock options; S. P. Madden: full-time employee of InfraReDx Inc. with stock/stock options; S. T. Sum: full-time employee of InfraReDx Inc. with stock/stock options; S. R. Dixon: none; R. D. Madder: none; J. E. Muller: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Goldstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstein, J.A., Madden, S.P., Sum, S.T. et al. Assessment of Plaque Composition with Near-Infrared Spectroscopy. Curr Cardiovasc Imaging Rep 4, 298–308 (2011). https://doi.org/10.1007/s12410-011-9095-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-011-9095-3

Keywords

Navigation