Skip to main content
Log in

Comparison of SHR, WKY and Wistar rats in different behavioural animal models: effect of dopamine D1 and alpha2 agonists

  • Original Article
  • Published:
ADHD Attention Deficit and Hyperactivity Disorders

Abstract

Spontaneously hypertensive rats (SHR) and its counterpart, the Wistar-Kyoto rats (WKY), are probably the most often used animal model of ADHD. However, SHR as model of ADHD have also been criticised partly because of not differing to outbred rat strains. In the present study, adolescent SHR, WKY and Wistar rats from Charles River were tested in open-field, elevated plus maze and novel object recognition and on gastrointestinal transport to more intensively evaluate the strain characteristics. Non-habituated SHR and Wistar rats were more active than WKY rats but contrary to Wistar rats SHR stay hyperactive in a familiar environment. SHR were more sensitive to the alpha2-adrenoceptor agonist guanfacine and the dopamine D1 agonist A-68930 than WKY and Wistar rats, whereas amphetamine, the D1/D5 agonist ABT431 and the D2 agonist quinpirole, similarly affected open-field activity in all strains. In the elevated plus maze, SHR and Wistar rats showed less anxiety-related behaviour than WKY rats. Guanfacine and amphetamine induced an anxiolytic-like activity in SHR but not in WKY and Wistar rats. SHR showed the highest long-term memory in the novel object recognition. Gastrointestinal transport was similar and comparably affected by guanfacine in all rat strains. The present study shows clear differences in the behaviour of SHR and Wistar rats but also of WKY and Wistar rats. The use of SHR as animal model of ADHD is supported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adriani W, Caprioli A, Granstrem O, Carli M, Laviola G (2003) The spontaneously hypertensive rat as an animal model of ADHD: evidence for impulsive and non-impulsive subpopulations. Neurosci Biobehav Rev 27:639–651

    Article  PubMed  Google Scholar 

  • Almeida SS, Tonkiss J, Gallert JR (1996) Prenatal protein malnutrition affects exploratory behavior of female rats in the elevated plus-maze test. Physiol Behav 60:675–680

    Article  PubMed  CAS  Google Scholar 

  • Amini B, Yang PB, Swann AC, Dafny N (2004) Differential locomotor responses in male rats from three strains to acute methylphenidate. Int J Neurosci 114:1063–1084

    Article  PubMed  CAS  Google Scholar 

  • Andréjak M, Pommier Y, Mouillé P, Schmitt H (1980) Effects of some alpha-adrenoceptor agonists and antagonists on the guinea-pig ileum. Naunyn Schmiedebergs Arch Pharmacol 314(1):83–87

    Article  PubMed  Google Scholar 

  • Arnsten AF, Dudley AG (2005) Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav Brain Funct 1:2–10

    Article  PubMed  Google Scholar 

  • Berger DF, Sagvolden T (1998) Sex difference in operant discrimination behaviour in an animal model of attention-deficit hyperactivity disorder. Behav Brain Res 94:73–82

    Article  PubMed  CAS  Google Scholar 

  • Bizot JC, Chenault N, Houzè B, Herpin A, David S, Pothion S, Trovero F (2007) Methylphenidate reduces impulsive behaviour in juvenile Wistar rats, but not in adult Wistar, SHR and WKY rats. Psychopharmacology (Berl) 193:215–223

    Article  CAS  Google Scholar 

  • Clements KM, Wainwright PE (2006) Spontaneously hypertensive, Wistar-Kyoto and Sprague–Dawley rats differ in performance on a win-shift task in the water radial arm maze. Behav Brain Res 167:295–304

    Article  PubMed  Google Scholar 

  • Croci T, Bianchetti A (1992) Stimulation of faecal excretion in rats by alpha 2-adrenergic antagonists. J Pharm Pharmacol 44:358–360

    PubMed  CAS  Google Scholar 

  • Davids E, Zhang K, Tarazi FI, Baldessarini RJ (2003) Animal models of attention-deficit hyperactivity disorder. Brain Res Rev 42:1–21

    Article  PubMed  Google Scholar 

  • Dawson GR, Crawford SP, Collinson N, Iversen SD, Tricklebank MD (1995) Evidence that the anxiolytic-like effects of chlordiazepoxide on the elevated plus maze are confounded by increases in locomotor activity. Psychopharmacology (Berl) 118:316–323

    Article  CAS  Google Scholar 

  • Dere E, Huston JP, De Souza Silva MA (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 31:673–704

    Article  PubMed  CAS  Google Scholar 

  • Doherty NS, Hancock AA (1983) Role of alpha-2 adrenergic receptors in the control of diarrhea and intestinal motility. J Pharmacol Exp Ther 225(2):269–274

    PubMed  CAS  Google Scholar 

  • Ernsberger P, Azar S, Iwai J (1983) Open-field behavior in two models of genetic hypertension and the behavioral effects of salt excess. Behav Neural Biol 37:46–60

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SA, Cada AM (2003) A longitudinal study of short- and long-term activity levels in male and female spontaneously hypertensive, Wistar-Kyoto, and Sprague–Dawley rats. Behav Neurosci 117:271–282

    Article  PubMed  Google Scholar 

  • Ferguson SA, Gray EP (2005) Aging effects on elevated plus maze behavior in spontaneously hypertensive, Wistar-Kyoto and Sprague–Dawley male and female rats. Physiol Behav 85:621–628

    Article  PubMed  CAS  Google Scholar 

  • Fox At, Hand DJ, Reilly MP (2008) Impulsive choice in a rodent model of attention-deficit/hyperactivity disorder. Behav Brain Res 187:146–152

    Article  PubMed  Google Scholar 

  • Gonzalez LE, Rujano M, Tucci S, Paredes D, Silva E, Alba G, Hernandez L (2000) Medial prefrontal transection enhances social interaction. I: behavioral studies. Brain Res 887:7–15

    Article  PubMed  CAS  Google Scholar 

  • Goto SH, Conceicao IM, Ribeiro RA, Frussa-Filho R (1993) Comparison of anxiety measured in the elevated plus-maze, open-field and social interaction tests between spontaneously hypertensive rats and Wistar EPM-1 rats. Braz J Med Biol Res 26:965–969

    PubMed  CAS  Google Scholar 

  • Hård E, Carlsson SG, Jern S, Larsson K, Lindh AS, Svensson L (1985) Behavioral reactivity in spontaneously hypertensive rats. Physiol Behav 35:487–492

    Article  PubMed  Google Scholar 

  • Heijtz RD, Castellanos FX (2006) Differential effects of a selective dopamine D1-like receptor agonist on motor activity and c-fos expression in the frontal-striatal circuitry of SHR and Wistar-Kyoto rats. Behav Brain Funct 2:18–27

    Article  Google Scholar 

  • Heijtz RD, Kolb B, Forssberg H (2007) Motor inhibitory role of dopamine D1 receptors: implication for ADHD. Physiol Behav 92:155–160

    Article  PubMed  CAS  Google Scholar 

  • Jucaite A, Fernell E, Halldin C, Forssberg H, Farde L (2005) Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol Psychiatry 57:229–238

    Article  PubMed  CAS  Google Scholar 

  • Kaplan BJ, Dewey D, Crawford SG, Fisher GC (1998) Deficits in long term memory are not characteristic of ADHD. J Clin Exp Neuropsychol 20:518–528

    Article  PubMed  CAS  Google Scholar 

  • Kibby MY, Cohen MJ (2008) Memory functioning in children with reading disabilities and/or attention deficit/hyperactivity disorder: a clinical investigation of their working memory and long-term memory functioning. Child Neuropsychol 31:1–22

    Google Scholar 

  • Knardahl S, Sagvolden T (1979) Open-field behaviour of spontaneously hypertensive rats. Behav Neural Biol 27:187–200

    Article  PubMed  CAS  Google Scholar 

  • Knardahl S, Sagvolden T (1981) Regarding hyperactivity of the SHR in the open-field test. Behav Neural Biol 32:274–275

    Article  PubMed  CAS  Google Scholar 

  • Komlos E, Petöcz LE (1970) Pharmacologic studies on the effect of N-(3-(1-benzyl-cycloheptyl-oxy)propyl)-N,N-dimethyl-ammonium-hydrogenfumarate. Arzneimittelforschung 10a:1338

    Google Scholar 

  • Liu L, Coupar IM (1997a) Characterisation of pre- and post-synaptic alpha-adrenoceptors in modulation of the rat ileum longitudinal and circular muscle activities. Naunyn Schmiedebergs Arch Pharmacol 356(2):248–256

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Coupar IM (1997b) Involvement of alpha-2 adrenoceptors in the effects of moxo-nidine on intestinal motility and fluid transport. J Pharmacol Exp Ther 283(3):1367–1374

    PubMed  CAS  Google Scholar 

  • Loskutova LV, Filatov AV, Dubrovia NI, Markel AL (2006) Peculiarities of active avoidance conditioning in rats with various forms of inherited arterial hypertension. Bull Exp Biol Med 142:406–408

    Article  PubMed  CAS  Google Scholar 

  • Moser MB, Moser EI, Wultz B, Sagvolden T (1988) Component analyses differentiate between exploratory behavior of spontaneously hypertensive rats and Wistar Kyoto rats in a two-compartment free-exploration open field. Scand J Psychol 29:200–206

    Article  PubMed  CAS  Google Scholar 

  • Paré WP (1989) Stress ulcer and open-field behavior of spontaneously hypertensive, normotensive, and Wistar rats. Pavlov Biol Sci 24:54–57

    Google Scholar 

  • Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 24:525–529

    Article  PubMed  CAS  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  PubMed  CAS  Google Scholar 

  • Pliszka SR (2005) The neuropsychopharmacology of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1385–1390

    Article  PubMed  CAS  Google Scholar 

  • Quartermain D, Stone EA, Charbonneau G (1996) Acute stress disrupts risk assessment behavior in mice. Physiol Behav 59:937–940

    Article  PubMed  CAS  Google Scholar 

  • Ramos A, Berton O, Mormede P, Chaouloff F (1997) A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behav Brain Res 85:57–69

    Article  PubMed  CAS  Google Scholar 

  • Roberts AC, Wallis JD (2000) Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. Cereb Cortex 10:252–262

    Article  PubMed  CAS  Google Scholar 

  • Robertson BA, Clements KM, Wainwright PE (2008) The working memory capabilities of the spontaneously hypertensive rat. Physiol Behav 94:481–486

    Article  PubMed  CAS  Google Scholar 

  • Roessner V, Sagvolden T, Dasbanerjee T, Middleton FA, Faraone SV, Walaas SI, Becker A, Rothenberger A, Bock N (2010) Methylphenidate normalizes elevated dopamine transporter densities in an animal model of the attention-deficit/hyperactivity disorder combined type, but not to the same extent in one of the attention-deficit/hyperactivity disorder inattentive type. Neuroscience 167:1183–1191

    Article  PubMed  CAS  Google Scholar 

  • Rutten K, Prickaerts J, Blockland A (2006) Rolipram reverses scopolamine-induced and time-dependent memory deficits in object recognition by different mechanisms of action. Neurobiol Learn Mem 85:132–138

    Article  PubMed  CAS  Google Scholar 

  • Rutten K, Prickaerts J, Hendrix JM, van der Staay FJ, Sik A, Blokland A (2007) Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Eur J Pharmacol 558:107–112

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T (2000) Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev 24:31–39

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T (2006) The alpha-2A adrenoceptor agonist guanfacine improves sustained attention and reduces overactivity and impulsiveness in an animal model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Funct 2:41–47

    Article  PubMed  Google Scholar 

  • Sagvolden T, Sergeant JA (1998) Attention deficit/hyperactivity disorder—from brain dysfunctions to behavior. Behav Brain Res 94:1–10

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Pettersoen MB, Larsen MC (1993) Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains. Physiol Behav 54:1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Dasbanerjee T, Zhang-James Y, Middleton FA, Faraone SV (2008) Behavioral and genetic evidence for a novel animal model of attention-deficit/hyperactivity disorder predominantly inattentive subtype. Behav Brain Funct 4:56–66

    Article  PubMed  CAS  Google Scholar 

  • Sagvolden T, Johansen EB, Wøien G, Walaas SI, Storm-Mathisen J, Bergersen LH, Hvalby O, Jensen V, Aase H, Russell VA, Killeen PR, Dasbanerjee T, Middleton FA, Faraone SV (2009) The spontaneously hypertensive rat model of ADHD-the importance of selecting the appropriate reference strain. Neuropharmacology 57:619–626

    Article  PubMed  CAS  Google Scholar 

  • Schaefer CF, Brackett DJ, Gunn CG, Wilson MF (1978a) Behavioral hyperreactivity in the spontaneously hypertensive rat compared to its normotensive progenitor. Pavlov J Biol Sci 13:211–216

    PubMed  CAS  Google Scholar 

  • Schaefer CF, Brackett DJ, Wilson MF, Gunn CG (1978b) Lifelong hyperarousal in the spontaneously hypertensive rat indicated by operant behavior. Pavlov J Biol Sci 13:217–225

    PubMed  CAS  Google Scholar 

  • Scheibner J, Trendelenburg AU, Hein L, Starke K, Blandizzi C (2002) α2-Adrenoceptors in the enteric nervous system: a study in α2A-adrenoceptor-deficient mice. Br J Pharmacol 135:697–704

    Article  PubMed  CAS  Google Scholar 

  • Soderpalm B, Svensson L, Hulthe P, Johannessen K, Engel JA (1991) Evidence for a role for dopamine in the diazepam locomotor stimulating effect. Psychopharmacology (Berl) 104:97–102

    Article  CAS  Google Scholar 

  • Tsukada H, Nishiyama S, Fukumoto D, Sato K, Kakiuchi T, Domino EF (2005) Chronic NMDA antagonism impairs working memory, decreases extracellular dopamine, and increases D1 receptor binding in prefrontal cortex of conscious monkeys. Neuropsychopharmacology 30:1861–1869

    Article  PubMed  CAS  Google Scholar 

  • Turner DC, Robbins TW, Clark L, Aron AR, Dowson J, Sahakian BJ (2003) Relative lack of cognitive effects of methylphenidate in elderly male volunteers. Psychopharmacology (Berl) 168:455–464

    Article  CAS  Google Scholar 

  • Van den Bergh FS, Bloemarts E, Chan JS, Groenink L, Olivier B, Oosting RS (2006) Spontaneously hypertensive rats do not predict symptoms of attention-deficit hyperactivity disorder. Pharmacol Biochem Behav 83:380–390

    Article  PubMed  Google Scholar 

  • Van den Buuse M, de Jong W (1989) Differential effects of dopaminergic drugs on open-field behavior of spontaneously hypertensive rats and normotensive Wistar-Kyoto rats. J Pharmacol Exp Ther 248:1189–1196

    PubMed  Google Scholar 

  • Viggiano D, Vallone D, Sadile A (2004) Dysfunctions in dopamine systems and ADHD: evidence from animals and modeling. Neural Plast 11:97–114

    Article  PubMed  CAS  Google Scholar 

  • Williams J, Sagvolden G, Taylor E, Sagvolden T (2008) Dynamic behavioural changes in the spontaneously hyperactive rat: 2. Control by novelty. Behav Brain Res 198:283–290

    Article  PubMed  Google Scholar 

  • Winstanley CA, Eagle DM, Robbins TW (2006) Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin Psychol Rev 26:379–395

    Article  PubMed  Google Scholar 

  • Wultz B, Sagvolden T, Moser EI, Moser MB (1990) The spontaneously hypertensive rat as an animal model of attention-deficit hyperactivity disorder: effect of methylphenidate on exploratory behavior. Behav Neural Biol 53:88–102

    Article  PubMed  CAS  Google Scholar 

  • Yang PB, Swann AC, Dafny N (2006) Acute and chronic methylphenidate dose-response assessment on three adolescent male rat strains. Brain Res Bull 71:301–310

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by European Fund for Regional Development (EFRE) and the Federal State of Saxony (grant no. SAB12525).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Langen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langen, B., Dost, R. Comparison of SHR, WKY and Wistar rats in different behavioural animal models: effect of dopamine D1 and alpha2 agonists. ADHD Atten Def Hyp Disord 3, 1–12 (2011). https://doi.org/10.1007/s12402-010-0034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12402-010-0034-y

Keywords

Navigation