Skip to main content
Log in

Enhancing the Inactivation of Bacterial Spores during Pressure-Assisted Thermal Processing

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

High pressure treatments have been the best pasteurization alternative to thermal processing due its capacity to reduce microbial safety risks and increase shelf life by inactivating microorganisms and key food spoilage–causing enzymes while retaining food freshness. In spite of these advantages, an important drawback limiting a wider application of this technology is its inability to inactivate bacterial spores which are resistant to several stress conditions, including high pressure. An approach to pressure-mediated spore inactivation is to promote spore germination which reduces their resistance to inactivation treatments. However, the germination response, and thus the spore inactivation rate achieved by these treatments, is strongly dependent on the food matrix, process conditions, spore physiology factors, and also on their interactions. Statistical experimental designs, such as the use of the central composite design as an optimization tool to identify effective PATP treatments as opposed to one-factor-at-a-time experimental designs, can reveal the importance of the effect of individual and combined factors on the inactivation response. A general review of these factors and examples of agents that could lower the severity of pressure treatments required to inactivate spores is here presented including the modelling of germination as affected by these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aasen IM, Markussen S, Møretrø T, Katla T, Axelsson L, Naterstad K (2003) Interactions of the bacteriocins sakacin P and nisin with food constituents. Int J Food Microbiol 87:35–43

    Article  CAS  PubMed  Google Scholar 

  2. Akhtar S, Paredes-Sabja D, Torres JA, Sarker MR (2009) Strategy to inactivate Clostridium perfringens spores in meat products. Food Microbiol 26:272–277

    Article  CAS  PubMed  Google Scholar 

  3. Al-Ghamdi S, Sonar CR, Patel J, Albahr Z, Sablani SS (2020) High pressure-assisted thermal sterilization of low-acid fruit and vegetable purees: microbial safety, nutrient, quality, and packaging evaluation. Food Control 114

  4. Aouadhi C, Simonin H, Prevost H, Lamballerie MD, Maaroufi A, Mejri S (2012) Optimization of pressure-induced germination of Bacillus sporothermodurans spores in water and milk. Food Microbiol 30(1):1–7

    Article  CAS  PubMed  Google Scholar 

  5. Aouadhi C, Simonin H, Mejri S, Maaroufi A (2013) The combined effect of nisin, moderate heating and high hydrostatic pressure on the inactivation of Bacillus sporothermodurans spores. J Appl Microbiol 115:147–155

    Article  CAS  PubMed  Google Scholar 

  6. Atrih A, Foster SJ (1999) The role of peptidoglycan structure and structural dynamics during endospore dormancy and germination. Antonie Van Leeuwenhoek 75(4):299–307

    Article  CAS  PubMed  Google Scholar 

  7. Balasubramanian S, Balasubramaniam VM (2010) Synergistic effect of pressure, temperature and pH on inactivation of Bacillus subtilis spores in buffer and model food systems. J Food Process Eng 33(5):781–801

    Google Scholar 

  8. Banawas S, Paredes-Sabja D, Korza G, Li Y, Hao B, Setlow P, Sarker MR (2013) The Clostridium perfringens germinant receptor protein GerKC is located in the spore inner membrane and is crucial for spore germination. J Bacteriol 195:5084–5091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Black EP, Setlow P, Hocking AD, Stewart CM, Kelly AL, Hoover DG (2007) Response of spores to high-pressure processing. Compr Rev Food Sci Food Saf 6:103–119

    Article  CAS  Google Scholar 

  10. Black EP, Linton M, McCall RD, Curran W, Fitzgerald GF, Kelly AL, Patterson MF (2008) The combined effects of high pressure and nisin on germination and inactivation of Bacillus spores in milk. J Appl Microbiol 105(1):78–87

    Article  CAS  PubMed  Google Scholar 

  11. Borch-Pedersen K, Lindbäck T, Madslien EH, Kidd SW, O’Sullivan K, Granum PE, Aspholm M (2017) Correction: The cooperative and interdependent roles of GerA, GerK, and Ynd in germination of Bacillus licheniformis spores [Applied and Environmental Microbiology, 82, 14, (2016) (4279-4287)] DOI: 10.1128/AEM.00594-16. Appl Environ Microbiol 83(23):e02105–e02117

    PubMed  PubMed Central  Google Scholar 

  12. Brunt J, Plowman J, Gaskin DJH, Itchner M, Carter AT, Peck MW (2014) Functional characterisation of germinant receptors in Clostridium botulinum and Clostridium sporogenes presents novel insights into spore germination systems. PLoS Pathog 10:e1004382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Busta FF, Bernard DT, Gravani RB, Hall P, Pierson MD, Prince G, Schaffner D, Swanson KM, Woodward B, Yiannas F (2003) Evaluation and definition of potentially hazardous foods. Compr Rev Food Sci Food Saf 2(2):8–14

    Google Scholar 

  14. Chung YK, Malone AS, Yousef AE (2008) Sensitization of microorganisms to high pressure processing by phenolic compounds. In: High Pressure Processing of Foods. Blackwell Publishing Ltd, Oxford, pp 145–172

    Google Scholar 

  15. Cortezzo DE, Setlow B, Setlow P (2004) Analysis of the action of compounds that inhibit the germination of spores of Bacillus species. J Appl Microbiol 96(4):725–741

    Article  CAS  PubMed  Google Scholar 

  16. Daryaei H, Balasubramaniam VM, Yousef AE, Legan JD, Tay A (2016) Lethality enhancement of pressure-assisted thermal processing against Bacillus amyloliquefaciens spores in low-acid media using antimicrobial compounds. Food Control 59:234–242

    Article  CAS  Google Scholar 

  17. de Lamo-Castellví S, Ratphitagsanti W, Balasubramaniam VM, Yousef AE (2010) Inactivation of Bacillus amyloliquefaciens spores by a combination of sucrose laurate and pressure-assisted thermal processing. J Food Prot 73:2043–2052

    Article  PubMed  Google Scholar 

  18. de Oliveira TLC, Ramos ALS, Ramos EM, Piccoli RH, Cristianini M (2015) Natural antimicrobials as additional hurdles to preservation of foods by high pressure processing. Trends Food Sci Technol 45(1):60–85

    Article  CAS  Google Scholar 

  19. Devatkal S, Somerville J, Thammakulkrajang R, Balasubramaniam VM (2015) Microbiological efficacy of pressure assisted thermal processing and natural extracts against Bacillus amyloliquefaciens spores suspended in deionized water and beef broth. Food Bioprod Process 95:183–191

    Article  CAS  Google Scholar 

  20. Doona CJ, Ghosh S, Feeherry FF, Ramirez-Peralta A, Huang Y, Chen H, Setlow P (2014) High pressure germination of Bacillus subtilis spores with alterations in levels and types of germination proteins. J Appl Microbiol 117:711–720

    Article  CAS  PubMed  Google Scholar 

  21. Du H, Yang J, Lu X, Lu Z, Bie X, Zhao H, Zhang C, Lu F (2018) Purification, characterization, and mode of action of plantaricin GZ1-27, a novel bacteriocin against Bacillus cereus. J Agric Food Chem 66(18):4716–4724

    Article  CAS  PubMed  Google Scholar 

  22. Egan K, Field D, Rea MC, Ross RP, Hill C, Cotter PD (2016) Bacteriocins: novel solutions to age old spore-related problems? Front Microbiol

  23. Escobedo-Avellaneda Z, Pateiro Moure M, Chotyakul N, Torres JA, Welti-Chanes J, Pérez-Lamela C (2011) Benefits and limitations of food processing by high pressure technologies: effects on functional compounds and abiotic contaminants. CyTA J Food 9(4):352–365

    Article  CAS  Google Scholar 

  24. Evelyn, Silva FVM (2019) Heat assisted HPP for the inactivation of bacteria, moulds and yeasts spores in foods: log reductions and mathematical models. Trends Food Sci Technol 88:143–156

    Article  CAS  Google Scholar 

  25. Gao YL, Ju XR, Jiang HH (2006) Studies on inactivation of Bacillus subtilis spores by high hydrostatic pressure and heat using design of experiments. J Food Eng 77:672–679

    Article  Google Scholar 

  26. Gao Y, Qiu W, Wu D, Fu Q (2011) Assessment of Clostridium perfringens spore response to high hydrostatic pressure and heat with nisin. Appl Biochem Biotechnol 164(7):1083–1095

    Article  CAS  PubMed  Google Scholar 

  27. Georget E, Sevenich R, Reineke K, Mathys A, Heinz V, Callanan M, Rauh C, Knorr D (2015) Inactivation of microorganisms by high isostatic pressure processing in complex matrices: a review. Innovative Food Sci Emerg Technol 27:1–14

    Article  CAS  Google Scholar 

  28. Hofstetter S, Gebhardt D, Ho L, Gänzle M, McMullen LM (2013) Effects of nisin and reutericyclin on resistance of endospores of Clostridium spp. to heat and high pressure. Food Microbiol 34(1):46–51

    Article  CAS  PubMed  Google Scholar 

  29. Howerton A, Ramirez N, Abel-Santos E (2011) Mapping interactions between germinants and Clostridium difficile spores. J Bacteriol 193:274–282

    Article  CAS  PubMed  Google Scholar 

  30. Huang HW, Lung HM, Yang BB, Wang CY (2014) Responses of microorganisms to high hydrostatic pressure processing. Food Control 40:250–259

    Article  Google Scholar 

  31. Huang HW, Wu SJ, Lu JK, Shyu YT, Wang CY (2017) Current status and future trends of high-pressure processing in food industry. Food Control 72:1–8

    Article  Google Scholar 

  32. Keskin Gündoğdu T, Deniz I, Çalışkan G, Şahin ES, Azbar N (2016) Experimental design methods for bioengineering applications. Crit Rev Biotechnol 36(2):368–388

    Article  PubMed  CAS  Google Scholar 

  33. Kochan TJ, Foley MH, Shoshiev MS, Somers MJ, Carlson PE, Hanna PC (2018) Updates to Clostridium difficile spore germination. J Bacteriol 200:1–12

    Article  Google Scholar 

  34. Krawczyk AO, de Jong A, Omony J, Holsappel S, Wells-Bennik MHJ, Kuipers OP, Eijlander RT (2017) Spore heat activation requirements and germination responses correlate with sequences of germinant receptors and with the presence of a specific spoVA2mob operon in foodborne strains of Bacillus subtilis. Appl Environ Microbiol 83(7):1–16

    Article  Google Scholar 

  35. Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S (2019) Bacteriocins: classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathog 128:171–177

    Article  CAS  PubMed  Google Scholar 

  36. Le Lay C, Dridi L, Bergeron MG, Ouellette M (2016) Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination. J Med Microbiol 65(2):169–175

    Article  PubMed  CAS  Google Scholar 

  37. Lopez-Pedemonte TJ, Roig-Sagues AX, Trujillo AJ, Capellas M, Guamis B (2003) Inactivation of spores of Bacillus cereus in cheese by high hydrostatic pressure with the addition of nisin or lysozyme. J Dairy Sci 86(10):3075–3081

    Article  CAS  PubMed  Google Scholar 

  38. Luu S, Cruz-Mora J, Setlow B, Feeherry FE, Doona CJ, Setlow P (2015) The effects of heat activation on Bacillus spore germination, with nutrients or under high pressure, with or without various germination proteins. Appl Environ Microbiol 81:2927–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lv X, Miao L, Ma H, Bai F, Lin Y, Sun M, Li J (2018) Purification, characterization and action mechanism of plantaricin JY22, a novel bacteriocin against Bacillus cereus produced by Lactobacillus plantarum JY22 from golden carp intestine. Food Sci Biotechnol 27(3):695–703

    Article  CAS  PubMed  Google Scholar 

  40. Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF, Gänzle MG (2006) High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl Environ Microbiol 72(5):3476–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meyer RS (2000) Ultra high pressure, high temperature food preservation process. 6,017,572

  42. Modugno C, Peltier C, Simonin H, Dujourdy L, Capitani F, Sandt C, Perrier-Cornet JM (2020) Understanding the effects of high pressure on bacterial spores using synchrotron infrared spectroscopy. Front Microbiol 10:3122

    Article  PubMed  PubMed Central  Google Scholar 

  43. Moeller R, Raguse M, Reitz G, Okayasu R, Li Z, Klein S, Setlow P, Nicholson WL (2014) Resistance of Bacillus subtilis spore DNA to lethal ionizing radiation damage relies primarily on spore core components and DNA repair, with minor effects of oxygen radical detoxification. Appl Environ Microbiol 80:104–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moir A (2006) How do spores germinate? J Appl Microbiol 101(3):526–530

    Article  CAS  PubMed  Google Scholar 

  45. Moir A, Cooper G (2016) Spore germination. In: Driks A, Eichenberger P (eds) The bacterial spore: from molecules to systems. p^pp. American Society of Microbiology, Washington, D.C., pp 217–236

    Chapter  Google Scholar 

  46. Nagler K, Setlow P, Li Y-Q, Moeller R (2014) High salinity alters the germination behavior of Bacillus subtilis spores with nutrient and nonnutrient germinants. Appl Environ Microbiol 80(4):1314–1321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nerandzic MM, Donskey CJ (2013) Activate to eradicate: Inhibition of Clostridium difficile spore outgrowth by the synergistic effects of osmotic activation and nisin. PLoS One 8(1):e54740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Olguín-Araneda V, Banawas S, Sarker MR, Paredes-Sabja D (2015) Recent advances in germination of Clostridium spores. Res Microbiol 166(4):236–243

    Article  PubMed  CAS  Google Scholar 

  49. Paredes-Sabja D, Gonzalez M, Sarker MR, Torres JA (2007) Combined effects of hydrostatic pressure, temperature, and pH on the inactivation of spores of Clostridium perfringens type A and Clostridium sporogenes in buffer solutions. J Food Sci 72(6):M202–M206

    Article  CAS  PubMed  Google Scholar 

  50. Paredes-Sabja D, Setlow P, Sarker MR (2011) Germination of spores of Bacillales and Clostridiales species: Mechanisms and proteins involved. Trends Microbiol 19(2):85–94

    Article  CAS  PubMed  Google Scholar 

  51. Paredes-Sabja D, Shen A, Sorg JA (2014) Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol 22(7):406–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pei J, Yue T, Yuan Y, Dai L (2017) Activity of paracin C from lactic acid bacteria against Alicyclobacillus in apple juice: application of a novelty bacteriocin. J Food Saf 37(4):e12350

    Article  CAS  Google Scholar 

  53. Piktel E, Pogoda K, Roman M, Niemirowicz K, Tokajuk G, Wróblewska M, Szynaka B, Kwiatek WM, Savage PB, Bucki R (2017) Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  54. Plomp M, Carroll AM, Setlow P, Malkin AJ (2014) Architecture and assembly of the Bacillus subtilis spore coat. PLoS One 9(9):e108560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Porębska I, Sokolowska B, Wozniak L (2017) Dipicolinic acid release and the germination of Alicyclobacillus acidoterrestris spores under nutrient germinants. Pol J Microbiol 66:67–74

    Article  PubMed  Google Scholar 

  56. Rajan S, Ahn J, Balasubramaniam VM, Yousef AE (2006) Combined pressure-thermal inactivation kinetics of Bacillus amyloliquefaciens spores in egg patty mince. J Food Prot 69:853–860

    Article  CAS  PubMed  Google Scholar 

  57. Reineke K, Mathys A, Heinz V, Knorr D (2013) Mechanisms of endospore inactivation under high pressure. Trends Microbiol 21(6):296–304

    Article  CAS  PubMed  Google Scholar 

  58. Rendueles E, Omer MK, Alvseike O, Alonso-Calleja C, Capita R, Prieto M (2011) Microbiological food safety assessment of high hydrostatic pressure processing: a review. LWT Food Sci Technol 44(5):1251–1260

    Article  CAS  Google Scholar 

  59. Samaranayake CP, Sastry SK (2013) In-situ pH measurement of selected liquid foods under high pressure. Innovative Food Sci Emerg Technol 17:22–26

    Article  CAS  Google Scholar 

  60. Sarker MR, Akhtar S, Torres JA, Paredes-Sabja D (2015) High hydrostatic pressure-induced inactivation of bacterial spores. Crit Rev Microbiol 41(1):18–26

    Article  CAS  PubMed  Google Scholar 

  61. Senior A, Moir A (2008) The Bacillus cereus GerN and GerT protein homologs have distinct roles in spore germination and outgrowth, respectively. J Bacteriol 190:6148–6152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Serment-Moreno V, Barbosa-Cánovas GV, Torres JA, Welti-Chanes J (2014) High pressure processing: kinetic models for microbial and enzyme inactivation. Food Eng Rev 6(3):56–88

    Article  CAS  Google Scholar 

  63. Serment-Moreno V, Deng K, Wu X, Welti-Chanes J, Velazquez G, Torres JA (2015a) Pressure effects on the rate of chemical reactions under the high pressure and high temperature conditions used in pressure-assisted thermal processing. In: Cheung PCK, Mehta BM (eds) Handbook of Food Chemistry, vol 1. Springer-Verlag, Berlin, pp 937–959

    Chapter  Google Scholar 

  64. Serment-Moreno V, Fuentes C, Barbosa-Cánovas GV, Torres JA, Welti-Chanes J (2015b) Evaluation of high pressure processing kinetic models for microbial inactivation using standard statistical tools and information theory criteria, and the development of generic time-pressure functions for process design. Food Bioprocess Technol 8(6):1244–1257

    Article  CAS  Google Scholar 

  65. Serment-Moreno V, Franco-Vega A, Escobedo-Avellaneda Z, Fuentes C, Torres JA, Dibildox-Alvarado E, Welti-Chanes J (2016a) The logistic-exponential Weibull model as a tool to predict natural microflora inactivation of Agave Mapsiaga Aguamiel (agave sap) by high pressure treatments. J Food Process Preserv 41(e12816):1–9

    Google Scholar 

  66. Serment-Moreno V, Torres JA, Fuentes C, Ríos-Alejandro JG, Barbosa-Cánovas GV, Welti-Chanes J (2016b) Limitations of the log-logistic model for the analysis of sigmoidal microbial inactivation data for high pressure processing (HPP). Food Bioprocess Technol 9(5):904–916

    Article  Google Scholar 

  67. Serment-Moreno V, Fuentes C, Guerrero-Beltrán JÁ, Torres JA, Welti-Chanes J (2017a) A Gompertz model approach to microbial inactivation kinetics by high pressure processing (HPP): incorporating come-up time effects, initial counts and detection limit. Food Bioprocess Technol 10(8):1495–1508

    Article  CAS  Google Scholar 

  68. Serment-Moreno V, Fuentes C, Torres JA, Welti-Chanes J (2017b) A Gompertz model approach to microbial inactivation kinetics by high pressure processing (HPP): experimental validation and model selection. J Food Sci 82(8):1885–1891

    Article  CAS  PubMed  Google Scholar 

  69. Setlow P (2014a) Germination of spores of Bacillus species: what we know and do not know. J Bacteriol 196(7):1297–1305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Setlow P (2014b) Spore resistance properties. Microbiol Spectrum 2(5):TBS-0003-2012

    Article  CAS  Google Scholar 

  71. Setlow P, Wang S, Li Y-Q (2017) Germination of spores of the orders Bacillales and Clostridiales. Annu Rev Microbiol 71:459–477

    Article  CAS  PubMed  Google Scholar 

  72. Shearer AEH, Dunne CP, Sikes A, Hoover DG (2000) Bacterial spore inhibition and inactivation in foods by pressure, chemical preservatives, and mild heat. J Food Prot 63:1503–1510

    Article  CAS  PubMed  Google Scholar 

  73. Silva FVM, Tan EK, Farid M (2012) Bacterial spore inactivation at 45–65 °C using high pressure processing: study of Alicyclobacillus acidoterrestris in orange juice. Food Microbiol 32:206–211

    Article  CAS  PubMed  Google Scholar 

  74. Sokołowska B, Ska̧pska S, Fonberg-Broczek M, Niezgoda J, Chotkiewicz M, Dekowska A, Rzoska S (2012) The combined effect of high pressure and nisin or lysozyme on the inactivation of Alicyclobacillus acidoterrestris spores in apple juice. High Pressure Res 32(1):119–127

    Article  CAS  Google Scholar 

  75. Stewart GC (2015) The exosporium layer of bacterial spores: a connection to the environment and the infected host. Microbiol Mol Biol Rev 79(4):437–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stewart KAV, Setlow P (2013) Numbers of individual nutrient germinant receptors and other germination proteins in spores of Bacillus subtilis. J Bacteriol 195:3575–3582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tola YB, Ramaswamy HS (2014) Combined effects of high pressure, moderate heat and pH on the inactivation kinetics of Bacillus licheniformis spores in carrot juice. Food Res Int 62:50–58

    Article  CAS  Google Scholar 

  78. Torres JA, Velazquez G (2005) Commercial opportunities and research challenges in the high pressure processing of foods. J Food Eng 67(1-2):95–112

    Article  Google Scholar 

  79. van Boekel MA (2002) On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int J Food Microbiol 74(1-2):139–159

    Article  PubMed  Google Scholar 

  80. van Opstal I, Bagamboula CF, Vanmuysen SC, Wuytack EY, Michiels CW (2004) Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments. Int J Food Microbiol 92(2):227–234

    Article  PubMed  Google Scholar 

  81. Vercammen A, Vivijs B, Lurquin I, Michiels CW (2012) Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. Int J Food Microbiol 152:162167

    Article  Google Scholar 

  82. Wang S, Brunt J, Peck MW, Setlow P, Li YQ (2017) Analysis of the germination of individual Clostridium sporogenes spores with and without germinant receptors and cortex-lytic enzymes. Front Microbiol 8:2047

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wells-Bennik MH, Eijlander RT, Den Besten HM, Berendsen EM, Warda AK, Krawczyk AO, Nierop Groot MN, Xiao Y, Zwietering MH, Kuipers OP (2016) Bacterial spores in food: survival, emergence, and outgrowth. Annu Rev Food Sci Technol 7:457–482

    Article  CAS  PubMed  Google Scholar 

  84. Zhang Y, Mathys A (2019) Superdormant spores as a hurdle for gentle germination-inactivation based spore control strategies. Front Microbiol 9:3163

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhao L, Zhang H, Hao T, Li S (2015) In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food Chem 187:370–377

    Article  CAS  PubMed  Google Scholar 

  86. Zhao S, Han J, Bie X, Lu Z, Zhang C, Lv F (2016) Purification and characterization of plantaricin JLA-9: a novel bacteriocin against Bacillus spp. produced by Lactobacillus plantarum JLA-9 from Suan-Tsai, a traditional Chinese fermented cabbage. J Agric Food Chem 64(13):2754–2764

    Article  CAS  PubMed  Google Scholar 

  87. Zimmermann M, Schaffner DW, Aragão GMF (2013) Modeling the inactivation kinetics of Bacillus coagulans spores in tomato pulp from the combined effect of high pressure and moderate temperature. LWT Food Sci Technol 53(1):107–112

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Tecnologico de Monterrey, Mexico (Research Chair Funds GEE 1A01001 and CDB081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Antonio Torres.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldrete-Tapia, J.A., Torres, J.A. Enhancing the Inactivation of Bacterial Spores during Pressure-Assisted Thermal Processing. Food Eng Rev 13, 431–441 (2021). https://doi.org/10.1007/s12393-020-09252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-020-09252-x

Keywords

Navigation