Skip to main content
Log in

Electrofiltration of Biopolymers

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Downstream processing of bioproducts, based on the number of purification steps involved, is the most expensive part in biotechnology and food production processes. Combination of several purification steps, including membrane filtration and electrophoresis, within a single technique is known as electrofiltration—a process based on application of electric field on a dead-end filtration system parallel to the filtrate’s flow direction. In this process, biopolymers, generally charged molecules with high viscosity, undergo both electrophoretic and hydrodynamic forces, reducing the thickness of the filter cake formed. As a result, electrofiltration can reduce processing time to minutes instead of hours when using conventional filtration. The objective of the present review is to assess the possibilities to purify technically and commercially important biopolymers like poly(3-hydroxybutyrate), hyaluronic acid, chitosan and xanthan by electrofiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Allison SA, Pei H, Xin Y (2007) Modeling the free solution and gel electrophoresis of biopolymers: the bead array-effective medium model. Biopolymers 87(2–3):102–114

    CAS  Google Scholar 

  2. Alper R, Lundgren DG, Marchessault RH, Cote WA (1963) Properties of poly beta-hydroxybutyrate. 1. General considerations concerning the naturally occurring polymer. Biopolymers 1(6):545–556

    CAS  Google Scholar 

  3. Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47(2):89–144

    CAS  Google Scholar 

  4. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54(4):450–472

    CAS  Google Scholar 

  5. Andre P (2004) Hyaluronic acid and its use as a “rejuvenation” agent in cosmetic dermatology. Semin Cutan Med Surg 23(4):218–222

    Google Scholar 

  6. Anlauf H (1994) Standardfiltertests zur Bestimmung des Kuchen- und Filtermediumwiderstandes bei der Feststoffabtrennung aus Suspensionen (Teil 1). Filtrieren und Separarieren 8:2

    Google Scholar 

  7. Armstrong DC, Johns MR (1997) Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus. Appl Environ Microbiol 63(7):2759–2764

    CAS  Google Scholar 

  8. Balazs N, Sipos P (2007) Limitations of pH-potentiometric titration for the determination of the degree of deacetylation of chitosan. Carbohydr Res 342(1):124–130

    CAS  Google Scholar 

  9. Barham PJ, Organ SJ (1994) Mechanical properties of polyhydroxybutyrate-hydroxybutyrate-hydroxyvalerate copolymer blends. J Mater Sci 29(6):1676–1679

    CAS  Google Scholar 

  10. Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena. Wiley, New York

    Google Scholar 

  11. Blank LM, McLaughlin RL, Nielsen LK (2005) Stable production of hyaluronic acid in Streptococcus zooppidemicus chemostats operated at high dilution rate. Biotechnol Bioeng 90(6):685–693

    CAS  Google Scholar 

  12. Boas NF (1949) Isolation of hyaluronic acid from the cocks comb. J Biol Chem 181(2):573–575

    CAS  Google Scholar 

  13. Bowen WR, Ahmad AL (1997) Pulsed electrophoretic filter-cake release in dead-end membrane processes. AIChE J 43(4):959–970

    CAS  Google Scholar 

  14. Bowen WR, Cao XW, Williams PM (1999) Use and elucidation of biochemical data in the prediction of the membrane separation of biocolloids. Proc R Soc Lond Ser Math Phys Eng Sci 455(1988):2933–2955

    CAS  Google Scholar 

  15. Bowen WR, Doneva TA, Stoton JAG (2002) Protein deposition during cross-flow membrane filtration: AFM studies and flux loss. Colloids Surf B Biointerfaces 27(2–3):103–113

    Google Scholar 

  16. Bowen WR, Jenner F (1995) Dynamic ultrafiltration model for charged colloidal dispersions—a Wigner–Seitz cell approach. Chem Eng Sci 50(11):1707–1736

    CAS  Google Scholar 

  17. Bowen WR, Williams PM (1996) Dynamic ultrafiltration for proteins—a colloidal interaction approach. Biotechnol Bioeng 50:125–135

    CAS  Google Scholar 

  18. Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: Physiological and engineering aspects. J Biotechnol 65(2–3):127–161

    CAS  Google Scholar 

  19. Brors A (1992) Untersuchungen zum Einfluss von elektrischen Feldern bei der Querstromfiltration von biologischen Suspensionen. Fortschrittberichte, VDI, Düsseldorf, p 284

    Google Scholar 

  20. Cai J, Yang JH, Du YM, Fan LH, Qiu YF, Li J, Kennedy JF (2006) Enzymatic preparation of chitosan from the waste Aspergillus niger mycelium of citric acid production plant. Carbohydr Polym 64(2):151–157

    CAS  Google Scholar 

  21. Charm SE, Wong BL (1981) Shear effects on enzymes. Enzym Microb Technol 3(2):111–118

    CAS  Google Scholar 

  22. Chen SJ, Chen JL, Huang WC, Chen HL (2009) Fermentation process development for hyaluronic acid production by Streptococcus zooepidemicus ATCC 39920. Korean J Chem Eng 26(2):428–432

    CAS  Google Scholar 

  23. Chien LJ, Lee CK (2007) Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol Prog 23(5):1017–1022

    CAS  Google Scholar 

  24. Darcy H (1856) Les Fontaines Publiques de la Ville de Kijon. Dalmont, Paris

    Google Scholar 

  25. Doi Y (1990) Microbial polyesters. VCH Publishers Inc, Yokohama

    Google Scholar 

  26. Doi Y, Steinbüchel A (2002) Biopolymers (Polyesters I). Wiley-VCH, New York

    Google Scholar 

  27. Dörfler HD (2002) Grenzflächen und kolloid-disperse Systeme. Springer, Heidelberg

    Google Scholar 

  28. Duan XJ, Yang L, Zhang X, Tan WS (2008) Effect of oxygen and shear stress on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. J Microbiol Biotechnol 18(4):718–724

    CAS  Google Scholar 

  29. Enevoldsen AD, Hansen EB, Jonsson G (2007) Electro-ultrafiltration of industrial enzyme solutions. J Memb Sci 299(1–2):28–37

    CAS  Google Scholar 

  30. European Bioplastics (2006) European Bioplastics boom in 2006—excellent outlook but more investment required to expand capacity. Plast Eng 63(1):6–7

    Google Scholar 

  31. Gao XD, Katsumoto T, Onodera K (1995) Purification and characterization of chitin deacetylase from Absidia Coerulea. J Biochem 117(2):257–263

    CAS  Google Scholar 

  32. Ghirisan A, Hofmann R, Posten C (2005) Druckfiltration und Druck-Elektrofiltration von Hefesuspensionen. Filtrieren und Separieren 19(3):118–122

    Google Scholar 

  33. Ghosh R (2003) Protein bioseparation using ultrafiltration: theory, application and new developments. Imperial College Press, London

    Google Scholar 

  34. Ghosh R (2006) Principles of bioseparations engineering. World Scientific Publishing, Singapore

    Google Scholar 

  35. Gomes JAP, Amankwah R, Powell-Richards A, Dua HS (2004) Sodium hyaluronate (hyaluronic acid) promotes migration of human corneal epithelial cells in vitro. Br J Ophthalmol 88(6):821–825

    CAS  Google Scholar 

  36. Groeger G, Geyer W, Bley T, Ondruschka J (2006) Fermentative Herstellung von Chitosan aus Pilzmycelien. Chemie Ingenieur Technik 78(4):479–483

    CAS  Google Scholar 

  37. Hamann CH, Vielstisch W (2005) Elektrochemie. Wiley-Vch, Weinheim

    Google Scholar 

  38. Harrison RG, Todd P, Rudge SR, Petrides DP (2003) Bioseparations science and engineering. Oxford University Express, New York

    Google Scholar 

  39. Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74(1):1–12

    CAS  Google Scholar 

  40. Hocking PJ, Revol JF, Marchessault RH (1996) Single crystals and crystalline morphology of synthetic racemic poly(beta-hydroxybutyrate). Macromolecules 29(7):2467–2471

    CAS  Google Scholar 

  41. Hofmann R, Posten C (2003) Improvement of dead-end filtration of biopolymers with pressure electrofiltration. Chem Eng Sci 58(17):3847–3858

    CAS  Google Scholar 

  42. Hofmann R, Weber K, Herrenbauer M, Posten C (2001) Press electrofiltration—a highly promising method of bioseparation. Chemie Ingenieur Technik 73(9):1218–1224

    CAS  Google Scholar 

  43. Ignatova EU, Gurov AN (1990) Principles of extraction and purification of hyaluronic-acid. Khimiko-Farmatsevticheskii Zhurnal 24(3):42–46

    CAS  Google Scholar 

  44. Imam SH, Gordon SH, Shogren RL, Tosteson TR, Govind NS, Greene RV (1999) Degradation of starch-poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) bioplastic in tropical coastal waters. Appl Environ Microbiol 65(2):431–437

    CAS  Google Scholar 

  45. Iritani E (2003) Properties of filter cake in cake filtration and membrane filtration. Kona 21:1–39

    Google Scholar 

  46. Iritani E, Mukai Y, Murase T (1995) Properties of filter cake in dead-end ultrafiltration of binary protein mixtures with retentive membranes. Chem Eng Res Design 73(A5):551–558

    CAS  Google Scholar 

  47. Iritani E, Nagaoka H, Katagiri N (2008) Determination of filtration characteristics of yeast suspension based upon multistage reduction in cake surface area under step-up pressure conditions. Sep Purif Technol 63(2):379–385

    CAS  Google Scholar 

  48. Iritani E, Ohashi K, Murase T (1992) Analysis of filtration mechanism of dead-end electroultrafiltration for proteinaceous solutions. J Chem Eng Jpn 25(4):383–388

    CAS  Google Scholar 

  49. Iwata M, Igami H, Murase T, Yoshida H (1991) Combined operation of electroosmotic dewatering and mechanical expression. J Chem Eng Jpn 24(3):399–401

    CAS  Google Scholar 

  50. Iwata T, Doi Y, Tanaka T, Akehata T, Shiromo M, Teramachi S (1997) Enzymatic degradation and adsorption on poly[(R)-3-hydroxybutyrate] single crystals with two types of extracellular PHB depolymerases from Comamonas acidovorans YM1609 and Alcaligenes faecalis T1. Macromolecules 30(18):5290–5296

    CAS  Google Scholar 

  51. Jaffrin MY (2008) Dynamic shear-enhanced membrane filtration: a review of rotating disks, rotating membranes and vibrating systems. J Memb Sci 324(1–2):7–25

    CAS  Google Scholar 

  52. Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432

    CAS  Google Scholar 

  53. John ME, Keller G (1996) Metabolic pathway engineering in cotton: Biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci U S A 93(23):12768–12773

    CAS  Google Scholar 

  54. Jones SA, Goodall DM, Cutler AN, Norton IT (1987) Application of conductivity studies and polyelectrolyte theory to the conformation and order-disorder transition of xanthan polysaccharide. Eur Biophys J Biophys Lett 15(3):185–191

    CAS  Google Scholar 

  55. Kakehi K, Kinoshita M, Yasueda S (2003) Hyaluronic acid: separation and biological implications. J Chromatogr B-Anal Technol Biomed Life Sci 797(1–2):347–355

    CAS  Google Scholar 

  56. Kanani DA, Sun XH, Ghosh R (2008) Reversible and irreversible membrane fouling during in-line microfiltration of concentrated protein solutions. J Memb Sci 315(1–2):1–10

    CAS  Google Scholar 

  57. Kaplan DL (1998) Biopolymers from renewable resources. Springer, Berlin

    Google Scholar 

  58. Käppler T, Posten C (2007) Fractionation of proteins with two-sided electro-ultrafiltration. J Biotechnol 128(4):895–907

    Google Scholar 

  59. Kaufmann M (1997) Unstable proteins: how to subject them to chromatographic separations for purification procedures. J Chromatogr B 699(1–2):347–369

    CAS  Google Scholar 

  60. Kawaguchi Y, Doi Y (1990) Structure of native poly(3-hydroxybutyrate) granules characterized by X-ray-diffraction. FEMS Microbiol Lett 70(2):151–156

    CAS  Google Scholar 

  61. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349

    CAS  Google Scholar 

  62. Kim SJ, Park SY, Kim CW (2006) A novel approach to the production of hyaluronic acid by Streptococcus zooepidemicus. J Microbiol Biotechnol 16(12):1849–1855

    CAS  Google Scholar 

  63. Knorr D (1984) Use of chitinous polymers in food—a challenge for food research and development. Food Technol 38(1):85–88

    CAS  Google Scholar 

  64. Koehler JA, Ulbricht M, Belfort G (1997) Intermolecular forces between proteins and polymer films with relevance to filtration. Langmuir 13(15):4162–4171

    CAS  Google Scholar 

  65. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    CAS  Google Scholar 

  66. Larue O, Vorobiev E (2004) Sedimentation and water electrolysis effects in electrofiltration of kaolin suspension. AIChE J 50(12):3120–3133

    CAS  Google Scholar 

  67. Lo GH, LaValley M, McAlindon T, Felson DT (2003) Intra-articular hyaluronic acid in treatment of knee osteoarthritis—a meta-analysis. JAMA 290(23):3115–3121

    CAS  Google Scholar 

  68. Lockhart NC (1992) Combined field dewatering—bridging the science-industry. GapDrying Technol 10(4):839–874

    CAS  Google Scholar 

  69. Luzier WD (1992) Materials derived from biomass/biodegradable material. Proc Natl Acad Sci U S A 89(3):839–842

    CAS  Google Scholar 

  70. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53

    CAS  Google Scholar 

  71. Manning GS (1981) Limiting laws and counterion condensation in poly-electrolyte solutions. 7. Electrophoretic mobility and conductance. J Phys Chem 85(11):1506–1515

    CAS  Google Scholar 

  72. Meyer K, Palmer JW (1934) The polysaccharide of the vitreous humor. J Biol Chem 107:629–634

    CAS  Google Scholar 

  73. Moulik SP (1971) Physical aspects of electrofiltration. Environ Sci Technol 5(9):771–776

    CAS  Google Scholar 

  74. Mukai Y, Yamaguchi S, Kime H, Iritani E (2009) Dead-end ultrafiltration characteristics of particulate suspensions containing macromolecule. Kagaku Kogaku Ronbunshu 35(1):87–93

    CAS  Google Scholar 

  75. Mullon C, Radovich JM, Behnam B (1985) A semiempirical model for electroultrafiltration-diafiltration. Sep Sci Technol 20(1):63–72

    CAS  Google Scholar 

  76. Muzzarelli RAA (1977) Chitin. Pergamon Press, Oxford

    Google Scholar 

  77. Nakamura H (1996) Roles of electrostatic interaction in proteins. Q Rev Biophys 29(1):1–90

    CAS  Google Scholar 

  78. Nakano T, Nakano K, Sim JS (1994) A simple rapid method to estimate hyaluronic-acid concentrations in rooster comb and wattle using cellulose-acetate electrophoresis. J Agric Food Chem 42(12):2766–2768

    CAS  Google Scholar 

  79. Nakashita H, Arai Y, Yoshioka K, Fukui T, Doi Y, Usami R, Horikoshi K, Yamaguchi I (1999) Production of biodegradable polyester by a transgenic tobacco. Biosci Biotechnol Biochem 63(5):870–874

    CAS  Google Scholar 

  80. Neesse TH, Dueck J, Djatchenko E (2009) Simulation of filter cake porosity in solid/liquid separation. Powder Technol 193(3):332–336

    CAS  Google Scholar 

  81. Noble PW, Lake FR, Henson PM, Riches DWH (1993) Hyaluronate activation of Cd44 induces insulin-like growth factor-I expression by a tumor-necrosis-factor-alpha dependent mechanism in murine macrophages. J Clin Invest 91(6):2368–2377

    CAS  Google Scholar 

  82. Numata K, Kikkawa Y, Tsuge T, Iwata T, Doi Y, Abe H (2006) Adsorption of biopolyester depolymerase on silicon wafer and poly[(R)-3-hydroxybutyric acid] single crystal revealed by real-time AFM. Macromol Biosci 6(1):41–50

    CAS  Google Scholar 

  83. Ondruschka J, Trutnau M, Bley T (2008) Gewinnung und Potenziale des Biopolymers Chitosan. Chemie Ingenieur Technik 80(6):811–820

    CAS  Google Scholar 

  84. Opong WS, Zydney AL (1991) Hydraulic permeability of protein layers deposited during ultrafiltration. J Colloid Interface Sci 142(1):41–60

    CAS  Google Scholar 

  85. Oregan M, Martini I, Crescenzi F, Deluca C, Lansing M (1994) Molecular mechanisms and genetics of hyaluronan biosynthesis. Int J Biol Macromol 16(6):283–286

    CAS  Google Scholar 

  86. Orsat V, Raghavan GSV, Sotocinal S, Lightfoot DG, Gopalakrishnan S (1999) Roller press for electro-osmotic dewatering of bio-materials. Drying Technol 17(3):523–538

    Google Scholar 

  87. Patnaik PR (2005) Perspectives in the modeling and optimization of PHB production by pure and mixed cultures. Crit Rev Biotechnol 25(3):153–171

    CAS  Google Scholar 

  88. Pfenning K, Bunge RP (1974) Freeze-fracturing of nerve growth cones and young fibers—study of developing plasma-membrane. J Cell Biol 63(1):180–196

    Google Scholar 

  89. Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256(5056):520–523

    CAS  Google Scholar 

  90. Pötter M, Müller H, Reinecke F, Wieczorek R, Fricke F, Bowien B, Friedrich B, Steinbuchel A (2004) The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology-Sgm 150:2301–2311

    Google Scholar 

  91. Rane KD, Hoover DG (1993) Production of Chitosan by Fungi. Food Biotechnol 7(1):11–33

    CAS  Google Scholar 

  92. Saveyn H, Van der Meeren P, Hofmann R, Stahl W (2005) Modelling two-sided electrofiltration of quartz suspensions: importance of electrochemical reactions. Chem Eng Sci 60(23):6768–6779

    CAS  Google Scholar 

  93. Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren Zur Kultur Wasserstoffoxydierender Bakterien—Wachstumsphysiologische Untersuchungen. Archiv für Mikrobiologie 38(3):209–222

    CAS  Google Scholar 

  94. Schlegel HG (2007) Allgemeine Mikrobiologie. Thieme, Stuttgart

    Google Scholar 

  95. Schwuger MJ (1996) Lehrbuch der Grenzfläch. Thieme, New York

    Google Scholar 

  96. Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez DJ, Stone DA, Padgette SR, Kishore G, Gruys KJ (1999) Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nature Biotechnol 17(10):1011–1016

    CAS  Google Scholar 

  97. Smith R (2005) Biodegradable polymers for industrial applications. CRC Press, Boca Raton

    Google Scholar 

  98. Sousa AS, Guimaraes AP, Goncalves CV, Silva IJ, Cavalcante CL, Azevedo DCS (2009) Purification and characterization of microbial hyaluronic acid by solvent precipitation and size-exclusion chromatography. Sep Sci Technol 44(4):906–923

    CAS  Google Scholar 

  99. Stein RS (1992) Polymer recycling—opportunities and limitations. Proc Natl Acad Sci U S A 89(3):835–838

    CAS  Google Scholar 

  100. Steinbüchel A (2003) Biopolymers, vol 10. Wiley-VCH, Weinheim

    Google Scholar 

  101. Steinbüchel A, Rhee SK (2005) Polysaccharides and polyamids in the food industry, vol 1. Wiley-VCH, Weinheim

    Google Scholar 

  102. Teng WL, Khor E, Tan TK, Lim LY, Tan SC (2001) Concurrent production of chitin from shrimp shells and fungi. Carbohydr Res 332(3):305–316

    CAS  Google Scholar 

  103. Tiller FM, Yeh CS, Leu WF (1987) Compressibility of particulate structures in relation to thickening, filtration, and expression—a review. Sep Sci Technol 22(2–3):1037–1063

    CAS  Google Scholar 

  104. Valentin HE, Broyles DL, Casagrande LA, Colburn SM, Creely WL, DeLaquil PA, Felton HM, Gonzalez KA, Houmiel KL, Lutke K, Mahadeo DA, Mitsky TA, Padgette SR, Reiser SE, Slater S, Stark DM, Stock RT, Stone DA, Taylor NB, Thorne GM, Tran M, Gruys KJ (1999) PHA production, from bacteria to plants. Int J Biol Macromol 25(1–3):303–306

    CAS  Google Scholar 

  105. Vorobiev E, Lebovka N (2008) Electrotechnologies for extraction from food plants and biomaterials. In: Hofmann R (ed) Electrofiltration of biomaterials. Springer, New York

    Google Scholar 

  106. Wang WK (2001) Membrane separations in biotechnology. Marcel Dekker, NewYork

    Google Scholar 

  107. Weatherley LR (1994) Engineering processes for bioseparations. Butterworth-Heinemann, Oxford

    Google Scholar 

  108. Weber K (2002) Untersuchungen zum Einfluss eines elektrischen Feldes auf die kuchenbildende Pressfiltration, vol 3. Fortschritt-Berichte VDI, Düsseldorf, p 733

    Google Scholar 

  109. Weber K, Stahl W (2002) Improvement of filtration kinetics by pressure electrofiltration. Sep Purif Technol 26(1):69–80

    CAS  Google Scholar 

  110. Widner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, Sternberg D, DeAngelis PL, Weigel PH, Brown S (2005) Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol 71(7):3747–3752

    CAS  Google Scholar 

  111. Yang XR, Yuan XY, Cai DN, Wang SY, Zong L (2009) Low molecular weight chitosan in DNA vaccine delivery via mucosa. Int J Pharm 375(1–2):123–132

    CAS  Google Scholar 

  112. Yen MT, Yang JH, Mau JL (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75(1):15–21

    CAS  Google Scholar 

  113. Yoo HS, Lee EA, Yoon JJ, Park TG (2005) Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 26(14):1925–1933

    CAS  Google Scholar 

  114. Yukawa H, Kobayahi K, Tsukui Y, Yamano S, Iwata M (1976) Analysis of batch elektrokinetic filtration. J Chem Eng Jpn 9:396–401

    CAS  Google Scholar 

  115. Yukawa H, Shimura K, Suda A, Maniwa A (1983) Cross-flow electro-ultrafiltration for colloidal solutions of proteins. J Chem Eng Jpn 16(4):305–311

    CAS  Google Scholar 

  116. Zamani A, Edebo L, Sjostrom B, Taherzadeh MJ (2007) Extraction and precipitation of chitosan from cell wall of zygomycetes fungi by dilute sulfuric acid. Biomacromolecules 8(12):3786–3790

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gözde Gözke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gözke, G., Posten, C. Electrofiltration of Biopolymers. Food Eng. Rev. 2, 131–146 (2010). https://doi.org/10.1007/s12393-010-9016-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-010-9016-2

Keywords

Navigation