Skip to main content
Log in

Ethylene was Involved in Ca2+-Regulated Na+ Homeostasis, Na+ Transport and Cell Ultrastructure During Adventitious Rooting in Cucumber Explants Under Salt Stress

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Salt stress as one of main abiotic stresses damaged plant growth and development. In this study, the effects of ethylene on Ca2+-regulated rooting index, Na+ and K+ concentration, Na+ transportation and cell ultrastructure during adventitious rooting in cucumber (Cucumis sativus L.) under salt stress were investigated. The results showed that ethylene might play a positive role in Ca2+-regulated rooting index during adventitious rooting under salt stress. Moreover, CaCl2 treatment significantly decreased the intracellular Na+ level but increased K+ content of cucumber explants under salt stress. However, the Na+ and K+ concentration which treated with Ca2+ treatment was significantly influenced by ethylene inhibitors under salt stress. Our results also showed that ethylene might be involved in Ca2+-affected cell ultrastructure of cucumber explants under salt condition. Further analysis showed that ethylene might be responsible for Ca2+-regulated Na+ transport through enhancing the transcriptional and protein levels of Na+/H+ antiporter as well as H+-ATPase for alleviating the negative effects of NaCl stress. Therefore, ethylene might act as a downstream signaling molecule of Ca2+ to maintain Na+ and K+ homeostasis via regulating Na+ transport and preserve the integrity of cellular ultrastructure of cucumber explant during adventitious rooting under salt condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amtmann A, Fischer M, Marsh EL, Stefanovic A, Sanders D, Schachtman DP (2001) The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt-sensitive yeast strain. Plant Physiol 126(3):1061–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581(12):2247–2254

    CAS  PubMed  Google Scholar 

  • Arraes FBM, Beneventi MA, de Sa MEL, Paixao JFR, Albuquerque EVS, Marin SRR, Purgatto E, Nepomuceno AL, Grossi-de-Sa MF (2015) Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol 15(1):213

    PubMed  PubMed Central  Google Scholar 

  • Asgher M, Per TS, Masood A, Fatma M, Freschi L, Corpas FJ, Khan NA (2017) Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environ Sci Pollut Res 24(3):2273–2285

    CAS  Google Scholar 

  • Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145(4):1714–1725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Craig Plett D, Møller IS (2010) Na+ transport in glycophytic plants: what we know and would like to know. Plant Cell Environ 33(4):612–626

    PubMed  Google Scholar 

  • da Wei Z, Vu TS, Huang J, Chi CY, Xing Y, Fu DD, Yuan ZN (2019) Effects of calcium on germination and seedling growth in melilotus officinalis L. (Fabaceae) under salt stress. Pak J Bot 51(1):1–9

    Google Scholar 

  • Davenport RJ, Tester M (2000) A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol 122(3):823–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois M, Van den Broeck L, Inzé D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23(4):311–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K, Pardo JM, Brini F (2014) A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Rep 33(2):277–288

    CAS  PubMed  Google Scholar 

  • Freitas VS, de Souza MR, Costa JH, de Oliveira DF, de Oliveira PS, de Castro ME, Freire RS, Prisco JT, Gomes-Filho E (2018) Ethylene triggers salt tolerance in maize genotypes by modulating polyamine catabolism enzymes associated with H2O2 production. Environ Exp Bot 145:75–86

    CAS  Google Scholar 

  • Freytag AH, Berlin JD, Linden JC (1977) Ethylene-induced fine structure alterations in cotton and sugarbeet radicle cells. Plant Physiol 60(1):140–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31

    CAS  Google Scholar 

  • Hniličková H, Hnilička F, Orsák M, Hejnák V (2019) Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil Environ 65(2):90–96

    Google Scholar 

  • Huang D, Gong X, Liu Y, Zeng G, Lai C, Bashir H, Zhou L, Wang D, Xu P, Cheng M (2017) Effects of calcium at toxic concentrations of cadmium in plants. Planta 245(5):863–873

    CAS  PubMed  Google Scholar 

  • Jaarsma R, de Vries RS, de Boer AH (2013) Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. PLoS ONE 8(3):e60183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Cui H, Lv X, Yang Y, Wang Y, Lu X (2017) Exogenous CaCl2 reduces salt stress in sour jujube by reducing Na+ and increasing K+, Ca2+, and Mg2+ in different plant organs. J Hortic Sci Biotechnol 92(1):98–106

    CAS  Google Scholar 

  • Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxide-and auxin-induced adventitious root formation in cucumber. J Exp Bot 57(6):1341–1351

    CAS  PubMed  Google Scholar 

  • Li J, Jia H, Wang J, Cao Q, Wen Z (2014) Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root. Protoplasma 251(4):899–912

    CAS  PubMed  Google Scholar 

  • Li J, Xu H-H, Liu W-C, Zhang X-W, Lu Y-T (2015) Ethylene inhibits root elongation during alkaline stress through AUXIN1 and associated changes in auxin accumulation. Plant Physiol 168(4):1777–1791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495(1):286–291

    CAS  PubMed  Google Scholar 

  • Lu W, Guo C, Li X, Duan W, Ma C, Zhao M, Gu J, Du X, Liu Z, Xiao K (2014) Overexpression of TaNHX3, a vacuolar Na+/H+ antiporter gene in wheat, enhances salt stress tolerance in tobacco by improving related physiological processes. Plant Physiol Biochem 76:17–28

    CAS  PubMed  Google Scholar 

  • Nath M, Garg B, Sahoo RK, Tuteja N (2015) PDH45 overexpressing transgenic tobacco and rice plants provide salinity stress tolerance via less sodium accumulation. Plant Signal Behav 10(4):e992289

    PubMed  PubMed Central  Google Scholar 

  • Nishi T, Yagi T (1995) Efflux of sodium ions by a Na+/H+-antiporter during salt stress in the salt-tolerant yeast Zygosaccharomyces rouxii. J Gen Appl Microbiol 41(2):87–97

    CAS  Google Scholar 

  • Niu L, Yu J, Liao W, Yu J, Zhang M, Dawuda MM (2017) Calcium and calmodulin are involved in nitric oxide-induced adventitious rooting of cucumber under simulated osmotic stress. Front Plant Sci 8:1684

    PubMed  PubMed Central  Google Scholar 

  • Niu L, Yu J, Liao W, Xie J, Yu J, Lv J, Xiao X, Hu L, Wu Y (2019) Proteomic investigation of S-nitrosylated proteins during NO-induced adventitious rooting of cucumber. Int J Mol Sci 20(21):5363

    CAS  PubMed Central  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22(6):4056–4075

    CAS  Google Scholar 

  • Quan R, Wang J, Yang D, Zhang H, Zhang Z, Huang R (2017) EIN3 and SOS2 synergistically modulate plant salt tolerance. Sci Rep 7:44637

    PubMed  PubMed Central  Google Scholar 

  • Rahman A, Nahar K, Hasanuzzaman M, Fujita M (2016) Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front Plant Sci 7:609

    PubMed  PubMed Central  Google Scholar 

  • Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact 13(1):73–82

    CAS  Google Scholar 

  • Rouphael Y, Raimondi G, Lucini L, Carillo P, Kyriacou MC, Colla G, Cirillo V, Pannico A, El-Nakhel C, De Pascale S (2018) Physiological and metabolic responses triggered by omeprazole improve tomato plant tolerance to NaCl stress. Front Plant Sci 9:249

    PubMed  PubMed Central  Google Scholar 

  • Rubio F, Flores P, Navarro JM, Martınez V (2003) Effects of Ca2+, K+ and cGMP on Na+ uptake in pepper plants. Plant Sci 165(5):1043–1049

    CAS  Google Scholar 

  • Sam O, Ramírez C, Coronado M, Testillano P, Risueño MdC (2003) Changes in tomato leaves induced by NaCl stress: leaf organization and cell ultrastructure. Biol Plant 47(3):361

    Google Scholar 

  • Santos CV (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hortic 103(1):93–99

    CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97(12):6896–6901

    CAS  PubMed  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu J-K (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14(2):465–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimokawa K, Sakanoshita A, Horiba K (1978) Ethylene-induced changes of chloroplast structure in Satsuma mandarin (Citrus unshiu Marc.). Plant Cell Physiol 19(2):229–236

    CAS  Google Scholar 

  • Sun J, Dai S, Wang R, Chen S, Li N, Zhou X, Lu C, Shen X, Zheng X, Hu Z (2009) Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiol 29(9):1175–1186

    CAS  PubMed  Google Scholar 

  • Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhou XY, Shen X, Zheng XJ, Zhang ZK (2010) H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ 33(6):943–958

    CAS  PubMed  Google Scholar 

  • Sun X, Zhang L, Wong DC, Wang Y, Zhu Z, Xu G, Wang Q, Li S, Liang Z, Xin H (2019) The ethylene response factor Va ERF 092 from Amur grape regulates the transcription factor Va WRKY 33, improving cold tolerance. Plant J

  • Tepe HD, Aydemir T (2015) Protective effects of Ca2+ against NaCl induced salt stress in two lentil (Lens culinaris) cultivars. Afr J Agric Res 10(23):2389–2398

    CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volkmar K, Hu Y, Steppuhn H (1998) Physiological responses of plants to salinity: a review. Can J Plant Sci 78(1):19–27

    CAS  Google Scholar 

  • Wang H, Liang X, Wan Q, Wang X, Bi Y (2009) Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta 230(2):293–307

    CAS  PubMed  Google Scholar 

  • Wang L, Bu X-L, Chen J, Huang D-F, Luo T (2018) Effects of NaCl on plant growth, root ultrastructure, water content, and ion accumulation in a halophytic seashore beach plum (Prunus maritima). Pak J Bot 50(3):863–869

    CAS  Google Scholar 

  • Wilson RL, Kim H, Bakshi A, Binder BM (2014) The ethylene receptors ethylene RESPONSE1 and ethylene RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salt stress. Plant Physiol 165(3):1353–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Wang S (2012) Calcium regulates K+/Na+ homeostasis in rice (Oryza sativa L) under saline conditions. Plant Soil Environ 58(3):121–127

    CAS  Google Scholar 

  • Xu X-T, Jin X, Liao W-B, Dawuda MM, Li X-P, Wang M, Niu L-J, Ren P-J, Zhu Y-C (2017) Nitric oxide is involved in ethylene-induced adventitious root development in cucumber (Cucumis sativus L.) explants. Sci Hortic 215:65–71

    CAS  Google Scholar 

  • Yamaguchi T, Hamamoto S, Uozumi N (2013) Sodium transport system in plant cells. Front Plant Sci 4:410

    PubMed  PubMed Central  Google Scholar 

  • Yang L, Zu Y-G, Tang Z-H (2013) Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. Environ Exp Bot 86:60–69

    CAS  Google Scholar 

  • Yang C, Ma B, He S-J, Xiong Q, Duan K-X, Yin C-C, Chen H, Lu X, Chen S-Y, Zhang JS (2015) MHZ6/OsEIL1 and OsEIL2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiol

  • Yao X, Horie T, Xue S, Leung H-Y, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI (2010) Differential sodium and potassium transport selectivities of the rice OsHKT2; 1 and OsHKT2; 2 transporters in plant cells. Plant Physiol 152(1):341–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Niu L, Yu J, Liao W, Xie J, Lv J, Feng Z, Hu L, Dawuda MM (2019) The involvement of ethylene in calcium-induced adventitious root formation in cucumber under salt stress. Int J Mol Sci 20(5):1047

    CAS  PubMed Central  Google Scholar 

  • Zhang S, Pan Y, Tian W, Dong M, Zhu H, Luan S, Li L (2017a) Arabidopsis CNGC14 mediates calcium influx required for tip growth in root hairs. Mol Plant 10(7):1004–1006

    CAS  PubMed  Google Scholar 

  • Zhang W-D, Wang P, Bao Z, Ma Q, Duan L-J, Bao A-K, Zhang J-L, Wang S-M (2017b) SOS1, HKT1; 5, and NHX1 synergistically modulate Na+ homeostasis in the halophytic grass Puccinellia tenuiflora. Front Plant Sci 8:576

    PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Liu W, Xu Y-P, Cao J-Y, Braam J, Cai X-Z (2013) Genome-wide identification and functional analyses of calmodulin genes in Solanaceous species. BMC Plant Biol 13(1):70

    PubMed  PubMed Central  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    CAS  PubMed  Google Scholar 

  • Zhu T, Zou L, Li Y, Yao X, Xu F, Deng X, Zhang D, Lin H (2018) Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum. Plant Biotechnol J 16(12):2063–2076

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National key research and development projects (2018YFD0201205), the National Natural Science Foundation of China (No. 31660584), China Agriculture Research System (CARS-23-C-07), Gansu Province Science and Technology Key Project Fund (No. 17ZD2NA015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Yu, J., Liao, W. et al. Ethylene was Involved in Ca2+-Regulated Na+ Homeostasis, Na+ Transport and Cell Ultrastructure During Adventitious Rooting in Cucumber Explants Under Salt Stress. J. Plant Biol. 63, 311–320 (2020). https://doi.org/10.1007/s12374-020-09254-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09254-6

Keywords

Navigation