Skip to main content
Log in

HS-SPME-GC/MS analysis of the volatile compounds of Achillea collina: Evaluation of the emissions fingerprint induced by Myzus persicae infestation

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

A Headspace Solid-phase Microextraction (HS-SPME) method combined with Gas Chromatography-Mass Spectrometry (GC/MS) was developed and optimized to extrat and analyze the volatile compounds of aerial parts of Achillea collina Becker ex Rchb. and to investigate the effect of the phlem feeding aphid Myzus persicae Sulzer on the Volatile Organic Compounds (VOCs) emitted by the infested plants. The extraction of 1 g of powdered freeze dried plant samples for 120 min at 30°C using divinylbenzene-carbowax-polydimethylsiloxane (DVB/CAR/PDMS) fiber showed the highest area counts for the majority of the volatile compounds. Overall, 62 and 80 volatile compounds were detected in control and infested plant samples respectively. In A. collina infested plants, we observed a great increase in both monoterpenes and sesquiterpenes fractions. Several changes among alcohols also occurred, particularly regarding Z-3-hexen-1-ol, E-3-hexen-1-ol and E-2-hexen-1-ol proposing these compounds as herbivore-induces plant volatiles (HIPVs). New perspective for agricultural practice may derive from the opportunity to identify novel herbivores-induced plant VOCs active as plant protection agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arimura GI, Matsui K, Takabayashi J (2009) Chemical and Molecular Ecology of Herbivore-Induced Plant Volatiles: Proximate Factors and Their Ultimate Functions. Plant Cell Physiol 50:911–923

    Article  PubMed  CAS  Google Scholar 

  • Arthur CL, Pawliszyn J (1990) Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  • Bezic N, Skocibusic M, Dunkic V, Radonic, A (2003) Composition and antimicrobial activity of Achillea clavennae L. essential oil. Phytother Res 17:1037–1040

    Article  PubMed  CAS  Google Scholar 

  • Bicchi C, Drigo S, Rubiolo P (2000) Influence of fibre coating in headspace solid-phase microextraction gas chromatography analysis of aromatic and medicinal plants. J Chromatogr A 892:469–485

    Article  PubMed  CAS  Google Scholar 

  • Bozin B, Dukic NM, Bogavac M, Suvajdzic L, Simin N, Samojlik I, Couladis, M (2008) Chemical composition, antioxidant and antibacterial properties of Achillea collina Becker ex Heimerl s.l. A. pannonica Scheele Essential oils. Molecules 13:2058–2068

    Article  PubMed  CAS  Google Scholar 

  • Csupor-Löffler B, Hajdu’ Z, Zupko I, Rethy B, Falkay G, Forgo P, Hohmann J (2009) Antiproliferative effect of flavonoids and sesquiterpenoids from Achillea millefolium s.l. on cultured human tumor cell line. Phytother Res 23:672–676

    Article  PubMed  Google Scholar 

  • Dancewicz K, Gabrys B, Dams I, Wawrzenczyk C (2008) Enantiospecific effect of pulegone and pulegone derived lactones on Myzus persicae (Sulz.) setting and feeding. J Chem Ecol 34:530–538

    Article  PubMed  CAS  Google Scholar 

  • Faccoli M, Anfora G, Tasin M (2008) Responses of the Mediterranean pine shoot beetle Tomicus destruens (wallaston) to pine shoot and bark volatiles. J Chem Ecol 34:1162–1169

    Article  PubMed  CAS  Google Scholar 

  • Filippi JJ, Lanfranchi DA, Prado S, Baldovini N, Meierhenrich UJ (2006) Composition, enantiomeric distribution, and antibacterial activity of the essential oil of Achillea ligustica All. from Corsica. J Agric Food Chem 54:6308–6313

    Article  PubMed  CAS  Google Scholar 

  • Giorgi A, Mingozzi M, Madeo M, Speranza G, Cocucci M (2009) Effect of nitrogen starvation on the phenolic metabolism and antioxidant properties of yarrow (Achillea collina Becker ex Rchb.) Food Chem 114:204–211

    Article  CAS  Google Scholar 

  • Giorgi A, Madeo M, Speranza G, Cocucci M (2010) Influence of environmental factors on composition of phenolic antioxidants of Achillea collina Becker ex Rchb. Nat Prod Res 24:1546–1559

    Article  PubMed  CAS  Google Scholar 

  • Girling RD, Madison R, Hassall M, Poppy GM, Turner, JG (2008) Investigations into plant biochemical wound-response pathways involved in the production of aphid-induced plant volatiles. J Exp Bot 59:3077–3085

    Article  PubMed  CAS  Google Scholar 

  • Glinwood R, Pettersson J, Ahmed E, Ninkovic V, Birkett M, Pickett J (2003) Change in acceptability of barley plants to aphids after exposure to allelochemicals from couch-grass Elytrigia repens. J Chem Ecol 29:261–274

    Article  PubMed  CAS  Google Scholar 

  • Guerrieri E, Digilio MC (2008) Aphid-plant interactions. J Plant Interact 3:223–232

    Article  Google Scholar 

  • Guo FQ, Huang LF, Zhou SY, Zhang TM, Liang YZ (2006) Comparison of the volatile compounds of Atractylodes medicinal plants by headspace solid-phase microextraction-gas chromatography-mass spectrometry. Anal Chim Acta 570:73–78

    Article  CAS  Google Scholar 

  • Halbert SE, Corsini D, Wiebe M., Vaughn SF (2009) Plant-derived compounds and extracts with potential as aphid repellents. Ann Appl Biol 154:303–307

    Article  CAS  Google Scholar 

  • Huang B, Lei Y, Tang Y, Zhang J, Qin L, Liu J (2010) Comparison of HS-SPME with hydrodistillation and SFE for the analysis of the volatile compounds of Zisu and Baisu, two varietal species of Perilla frutescens of Chinese origin. Food Chem 125:268–275

    Article  Google Scholar 

  • Kastner U, Sosa S, Tubaro A, Breuer, J, Ruecker G, Loggia RD, Jurenitsch J (1993) Anti-Edematous activity of sesquiterpene lactones from different taxa of the Achillea millefolium group Planta Med 59:A669

    Article  Google Scholar 

  • Kigathi NR, Unsicker SB, Reichelt M, Kesselmeier J, Gershenzon J, Wolfgang WW (2009) Emission of volatiles organic compounds after herbivory from Trifolium pratense (L.) under laboratory and field conditions. J Chem Ecol 35:1335–1348

    Article  PubMed  CAS  Google Scholar 

  • Kubelka W, Kastner U, Glasl S, Saukel J, Jureinitsch J (1999) Chemotaxonomic relevance of sesquiterpenes within the Achillea millefolium group. Biochem Syst Ecol 27:437–444

    Article  CAS  Google Scholar 

  • Mello MO, Siva-Filho MC (2002) Plant-insect interactions: an evolutionary arms race between two distinct defense mechanisms. Braz J Plant Physiol 14:71–81

    Article  CAS  Google Scholar 

  • Mockute’ D, Judzentiene A (2002) Chemical composition of the essential oils of Achillea millefolium L. spp. millefolium (yarrow) growing wild in Vilnius. Chemija (Vilnius) 13:97–102

    Google Scholar 

  • Farag MA, Zhang MFHAH, Allen RD, Parè PW. (Z)-3-Hexenol induces defense genes and downstream metabolitesin maize. Planta (2005) 220:900–909

    Article  PubMed  CAS  Google Scholar 

  • Moran PJ, Cheng Y, Cassell JL, Thompson GA (2005) (Z)-3-Hexenol induces defense genes and downstream metabolites in maize

  • Muselli A, Pau M, Desjobert J, Foddai M, Usai M, Costa, J (2009) Volatile constituents of Achillea liguistica All. by HS-SPME/GC/GC-MS. Comparison with essential oils obtained by hydro distillation from Corsica and Sardinia. Chromatographia 69:575–585

    Article  CAS  Google Scholar 

  • Nombela G, Willamson VM, Muniz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant-Microbe Interact 16:645–649

    Article  PubMed  CAS  Google Scholar 

  • Oliveira AP, Silva LR, Andrade PB, Valentao P, Silva BM, Pereira JA, Pinho P GD (2010) Determination of low molecular weight volatiles in Ficus carica using HS-SPME and GC/FID. Food Chem 121:1289–1295

    Article  CAS  Google Scholar 

  • Parè PW Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331

    Article  PubMed  Google Scholar 

  • Pareja M, Moraes MCB, Clark SJ, Birkett MA, Powell W (2007) Response of the aphids parasitoid Aphidus funebris to volatiles from undamaged and aphid infested Centaurea nigra. J Chem Ecol 33:695–710

    Article  PubMed  CAS  Google Scholar 

  • Rauchensteiner F, Nejati S, Werne I, Glasl S, Saukel J, Jurenitsch J, Kubelka W (2002). Determination of taxa of the Achillea millefolium group and Achillea crithmifolia by morphological and photochemical methods. Sci Pharm 70:199–230

    CAS  Google Scholar 

  • Rohloff J, Skagen EB, Steen AH, Iversen, TH (2000) Production of yarrow (Achillea millefolium L.) in Norway: essential oil content and quality. J Agric Food Chem 48:6205–6209

    Article  PubMed  CAS  Google Scholar 

  • Smith CM, Boyco EV (2007) The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol Exp Appl 122:1–16

    Article  CAS  Google Scholar 

  • Tuberoso CIG, Kowalczyk A, Coroneo V, Russo MT, Dessi S, Cabras P (2005) Chemical composition and antioxidant, antimicrobial, antifungal activities of the essential oil of Achillea ligustica All. J Agric Food Chem 53:10148–10153

    Article  PubMed  CAS  Google Scholar 

  • Will T, van Bel JE (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 4:729–737

    Article  Google Scholar 

  • Zhang C, Qi M, Shao Q, Zhou S, Fu R (2007) Analysis of the volatile compounds in Ligusticum chuanxiong Hort. using HS-SPMEGC-MS. J Pharm Biomed Anal 44:464–470

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Giorgi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giorgi, A., Panseri, S., Masachchige Chandrika Nanayakkara, N.N. et al. HS-SPME-GC/MS analysis of the volatile compounds of Achillea collina: Evaluation of the emissions fingerprint induced by Myzus persicae infestation. J. Plant Biol. 55, 251–260 (2012). https://doi.org/10.1007/s12374-011-0356-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-011-0356-0

Keywords

Navigation