Skip to main content
Log in

Organelle Identification and Characterization in Plant Cells: Using a Combinational Approach of Confocal Immunofluorescence and Electron Microscope

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

The plant secretory and endocytic pathways consist of several functionally distinct membrane-bounded compartments. The ultra structures of the endoplasmic reticulum, the Golgi apparatus, and central vacuoles have been well characterized via traditional structural electron microscope (EM). However, the identification of plant prevacuolar compartments (PVCs) and early endosomes (EEs) had not been achieved until more recently because of the lack of specific markers for these organelles. Recent development of fluorescent reporters for PVCs and EEs expressing in transgenic tobacco BY-2 cells and Arabidopsis plants has allowed their dynamic characterization in living cells via confocal microscopy and drug treatment, which led to their subsequent morphological identification via structural and immunogold EM. Thus, in this review, we will use our studies on PVCs and EEs as examples to present an efficient approach for organelle identification in plant cells via primary characterization of fluorescent-marked organelles in living cells and their dynamic response to drug treatments, which then serves as the basis for subsequent immunogold and structural EM studies for organelle identification. Such strategy thus represents a powerful approach in future research for the identification of novel organelles and transport vesicles in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed SU, Bar-Peled M, Raikhel NV (1997) Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Physiol 114(1):325–336

    Article  PubMed  CAS  Google Scholar 

  2. Battey NH, James NC, Greenland AJ, Brownlee C (1999) Exocytosis and endocytosis. Plant Cell 11(4):643–660

    Article  PubMed  CAS  Google Scholar 

  3. Bethke PC, Jones RL (2000) Vacuoles and prevacuolar compartments. Curr Opin Plant Biol 3(6):469–475

    Article  PubMed  CAS  Google Scholar 

  4. Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214(Pt 2):159–173

    Article  PubMed  CAS  Google Scholar 

  5. Brandizzi F, Irons SL, Johansen J, Kotzer A, Neumann U (2004) GFP is the way to glow: bioimaging of the plant endomembrane system. J Microsc 214(Pt 2):138–158

    Article  PubMed  CAS  Google Scholar 

  6. Brandizzi F, Snapp EL, Roberts AG, Lippincott-Schwartz J, Hawes C (2002) Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14(6):1293–1309

    Article  PubMed  CAS  Google Scholar 

  7. Bright NA, Lindsay MR, Stewart A, Luzio JP (2001) The relationship between lumenal and limiting membranes in swollen late endocytic compartments formed after wortmannin treatment or sucrose accumulation. Traffic 2(9):631–642

    Article  PubMed  CAS  Google Scholar 

  8. Chow CM, Neto H, Foucart C, Moore I (2008) Rab-A2 and Rab-A3 GTPases define a trans-Golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20(1):101–123

    Article  PubMed  CAS  Google Scholar 

  9. daSilva Conceicao A, Marty-Mazars D, Bassham DC, Sanderfoot AA, Marty F, Raikhel NV (1997) The syntaxin homolog AtPEP12p resides on a late post-Golgi compartment in plants. Plant Cell 9(4):571–582

    Article  CAS  Google Scholar 

  10. daSilva LL, Foresti O, Denecke J (2006) Targeting of the plant vacuolar sorting receptor BP80 is dependent on multiple sorting signals in the cytosolic tail. Plant Cell 18(6):1477–1497

    Article  PubMed  CAS  Google Scholar 

  11. daSilva LL, Taylor JP, Hadlington JL, Hanton SL, Snowden CJ, Fox SJ, Foresti O, Brandizzi F, Denecke J (2005) Receptor salvage from the prevacuolar compartment is essential for efficient vacuolar protein targeting. Plant Cell 17(1):132–148

    Article  PubMed  CAS  Google Scholar 

  12. Das S, Hussain A, Bock C, Keller WA, Georges F (2005) Cloning of Brassica napus phospholipase C2 (BnPLC2), phosphatidylinositol 3-kinase (BnVPS34) and phosphatidylinositol synthase1 (BnPtdIns S1)—comparative analysis of the effect of abiotic stresses on the expression of phosphatidylinositol signal transduction-related genes in B. napus. Planta 220(5):777–784

    Article  PubMed  CAS  Google Scholar 

  13. Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18(3):715–730

    Article  PubMed  CAS  Google Scholar 

  14. Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17(6):520–527

    Article  PubMed  CAS  Google Scholar 

  15. Emans N, Zimmermann S, Fischer R (2002) Uptake of a fluorescent marker in plant cells is sensitive to brefeldin A and wortmannin. Plant Cell 14(1):71–86

    Article  PubMed  CAS  Google Scholar 

  16. Foresti O, daSilva LL, Denecke J (2006) Overexpression of the Arabidopsis syntaxin PEP12/SYP21 inhibits transport from the prevacuolar compartment to the lytic vacuole in vivo. Plant Cell 18(9):2275–2293

    Article  PubMed  CAS  Google Scholar 

  17. Hara-Nishimura II, Shimada T, Hatano K, Takeuchi Y, Nishimura M (1998) Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell 10(5):825–836

    Article  PubMed  CAS  Google Scholar 

  18. Hernandez LE, Escobar C, Drobak BK, Bisseling T, Brewin NJ (2004) Novel expression patterns of phosphatidylinositol 3-hydroxy kinase in nodulated Medicago spp. plants. J Exp Bot 55(398):957–959

    Article  PubMed  CAS  Google Scholar 

  19. Hong Z, Verma DP (1994) A phosphatidylinositol 3-kinase is induced during soybean nodule organogenesis and is associated with membrane proliferation. Proc Natl Acad Sci USA 91(20):9617–9621

    Article  PubMed  CAS  Google Scholar 

  20. Horn MA, Heinstein PF, Low PS (1990) Biotin-mediated delivery of exogenous macromolecules into soybean cells. Plant Physiol 93(4):1492–1496

    Article  PubMed  CAS  Google Scholar 

  21. Hubner R, Depta H, Robinson DG (1985) Endocytosis in maize root cap cells: evidence obtained using heavy metal salt solutions. Protoplasma 129:214–222

    Article  Google Scholar 

  22. Jaillais Y, Fobis-Loisy I, Miege C, Gaude T (2008) Evidence for a sorting endosome in Arabidopsis root cells. Plant J 53(2):237–247

    Article  PubMed  CAS  Google Scholar 

  23. Jaillais Y, Fobis-Loisy I, Miege C, Rollin C, Gaude T (2006) AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature 443(7107):106–109

    Article  PubMed  CAS  Google Scholar 

  24. Jiang L, Rogers JC (1998) Integral membrane protein sorting to vacuoles in plant cells: evidence for two pathways. J Cell Biol 143(5):1183–1199

    Article  PubMed  CAS  Google Scholar 

  25. Kornfeld S (1992) Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem 61:307–330

    Article  PubMed  CAS  Google Scholar 

  26. Lam SK, Cai Y, Hillmer S, Robinson DG, Jiang L (2008) SCAMPs highlight the developing cell plate during cytokinesis in tobacco BY-2 cells. Plant Physiol 147(4):1637–1645

    Article  PubMed  CAS  Google Scholar 

  27. Lam SK, Siu CL, Hillmer S, Jang S, An G, Robinson DG, Jiang L (2007a) Rice SCAMP1 defines clathrin-coated, trans-Golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell 19(1):296–319

    Article  CAS  Google Scholar 

  28. Lam SK, Tse YC, Robinson DG, Jiang L (2007b) Tracking down the elusive early endosome. Trends Plant Sci 12(11):497–505

    Article  CAS  Google Scholar 

  29. Li YB, Rogers SW, Tse YC, Lo SW, Sun SS, Jauh GY, Jiang L (2002) BP-80 and homologs are concentrated on post-Golgi, probable lytic prevacuolar compartments. Plant Cell Physiol 43(7):726–742

    Article  PubMed  CAS  Google Scholar 

  30. Marcusson EG, Horazdovsky BF, Cereghino JL, Gharakhanian E, Emr SD (1994) The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell 77(4):579–586

    Article  PubMed  CAS  Google Scholar 

  31. Matsuoka K, Bassham DC, Raikhel NV, Nakamura K (1995) Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol 130(6):1307–1318

    Article  PubMed  CAS  Google Scholar 

  32. Miao Y, Jiang L (2007) Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nat Protoc 2(10):2348–2353

    Article  PubMed  CAS  Google Scholar 

  33. Miao Y, Li KY, Li HY, Yao X, Jiang L (2008) The vacuolar transport of aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar compartments in tobacco BY-2 and Arabidopsis suspension cultured cells. Plant J 56:824–839, doi:10.1111/j.1365-313X.2008.03645.x)

    Article  PubMed  CAS  Google Scholar 

  34. Miao Y, Yan PK, Kim H, Hwang I, Jiang L (2006) Localization of green fluorescent protein fusions with the seven Arabidopsis vacuolar sorting receptors to prevacuolar compartments in tobacco BY-2 cells. Plant Physiol 142(3):945–962

    Article  PubMed  CAS  Google Scholar 

  35. Mo B, Tse YC, Jiang L (2006) Plant prevacuolar/endosomal compartments. Int Rev Cytol 253:95–129

    Article  PubMed  CAS  Google Scholar 

  36. Nebenfuhr A, Gallagher LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB, Staehelin LA (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121(4):1127–1142

    Article  PubMed  CAS  Google Scholar 

  37. Nebenfuhr A, Ritzenthaler C, Robinson DG (2002) Brefeldin A: deciphering an enigmatic inhibitor of secretion. Plant Physiol 130(3):1102–1108

    Article  PubMed  CAS  Google Scholar 

  38. Oparka KJ, Roberts AG, Cruz SS, Boevink P, Prior DAM, Smallcombe A (1997) Using GFP to study virus invasion and spread in plant tissues. Nature 388(6640):401–402

    Article  CAS  Google Scholar 

  39. Ortiz-Zapater E, Soriano-Ortega E, Marcote MJ, Ortiz-Masia D, Aniento F (2006) Trafficking of the human transferrin receptor in plant cells: effects of tyrphostin A23 and brefeldin A. Plant J 48(5):757–770

    Article  PubMed  CAS  Google Scholar 

  40. Paris N, Neuhaus JM (2002) BP-80 as a vacuolar sorting receptor. Plant Mol Biol 50(6):903–914

    Article  PubMed  CAS  Google Scholar 

  41. Paris N, Rogers SW, Jiang L, Kirsch T, Beevers L, Phillips TE, Rogers JC (1997) Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol 115(1):29–39

    Article  PubMed  CAS  Google Scholar 

  42. Pesacreta TC, Lucas WJ (1985) Presence of a partially-coated reticulum in angiosperms. Protoplasma 125:173–184

    Article  Google Scholar 

  43. Reggiori F, Black MW, Pelham HR (2000) Polar transmembrane domains target proteins to the interior of the yeast vacuole. Mol Biol Cell 11(11):3737–3749

    PubMed  CAS  Google Scholar 

  44. Ritzenthaler C, Nebenfuhr A, Movafeghi A, Stussi-Garaud C, Behnia L, Pimpl P, Staehelin LA, Robinson DG (2002) Reevaluation of the effects of brefeldin A on plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell 14(1):237–261

    Article  PubMed  CAS  Google Scholar 

  45. Robinson DG, Jiang L, Schumacher K (2008) The endosomal system of plants: charting new and familiar territories. Plant Physiol 147(4):1482–1492

    Article  PubMed  CAS  Google Scholar 

  46. Robinson DG, Oliviusson P, Hinz G (2005) Protein sorting to the storage vacuoles of plants: a critical appraisal. Traffic 6(8):615–625

    Article  PubMed  CAS  Google Scholar 

  47. Sanderfoot AA, Assaad FF, Raikhel NV (2000) The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol 124(4):1558–1569

    Article  PubMed  CAS  Google Scholar 

  48. Satiat-Jeunemaitre B, Cole L, Bourett T, Howard R, Hawes C (1996) Brefeldin A effects in plant and fungal cells: something new about vesicle trafficking? J Microsc 181(Pt 2):162–177

    PubMed  CAS  Google Scholar 

  49. Sciaky N, Presley J, Smith C, Zaal KJ, Cole N, Moreira JE, Terasaki M, Siggia E, Lippincott-Schwartz J (1997) Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J Cell Biol 139(5):1137–1155

    Article  PubMed  CAS  Google Scholar 

  50. Segui-Simarro JM, Staehelin LA (2006) Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: a quantitative and spatial analysis. Planta 223(2):223–236

    Article  PubMed  CAS  Google Scholar 

  51. Tanchak MA, Griffing LR, Mersey BG, Fowke LC (1984) Endocytosis of cationized ferritin by coated vesicles of soybean protoplasts. Planta 162:481–486

    Article  CAS  Google Scholar 

  52. Thelen M, Wymann MP, Langen H (1994) Wortmannin binds specifically to 1-phosphatidylinositol 3-kinase while inhibiting guanine nucleotide-binding protein-coupled receptor signaling in neutrophil leukocytes. Proc Natl Acad Sci USA 91(11):4960–4964

    Article  PubMed  CAS  Google Scholar 

  53. Tse YC, Lo SW, Hillmer S, Dupree P, Jiang L (2006) Dynamic response of prevacuolar compartments to brefeldin a in plant cells. Plant Physiol 142(4):1442–1459

    Article  PubMed  CAS  Google Scholar 

  54. Tse YC, Mo B, Hillmer S, Zhao M, Lo SW, Robinson DG, Jiang L (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16(3):672–693

    Article  PubMed  CAS  Google Scholar 

  55. Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20(17):4730–4741

    Article  PubMed  CAS  Google Scholar 

  56. Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128(5):779–792

    Article  PubMed  CAS  Google Scholar 

  57. Welters P, Takegawa K, Emr SD, Chrispeels MJ (1994) AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc Natl Acad Sci USA 91(24):11398–11402

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwen Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tse, Y.C., Lam, S.K. & Jiang, L. Organelle Identification and Characterization in Plant Cells: Using a Combinational Approach of Confocal Immunofluorescence and Electron Microscope. J. Plant Biol. 52, 1–9 (2009). https://doi.org/10.1007/s12374-008-9000-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-008-9000-z

Keywords

Navigation