Skip to main content
Log in

Measuring the Improvement of the Interaction Comfort of a Wearable Exoskeleton

A Multi-Modal Control Mechanism Based on Force Measurement and Movement Prediction

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

This paper presents a study conducted to evaluate and optimize the interaction experience between a human and a 9 DOF arm-exoskeleton by the integration of predictions based on electroencephalographic signals (EEG). Due to an ergonomic kinematic architecture and the presence of three contact points, which enable the reflection of complex force patterns, the developed exoskeleton takes full advantage of the human arm mobility, allowing the operator to tele-control complex robotic systems in an intuitive way via an immersive simulation environment. Taking into account the operator’s percept and a set of constraints on the exoskeleton control system, it is illustrated how to quantitatively enhance the comfort and the performance of this sophisticated human–machine interface. Our approach of integrating EEG signals into the control of the exoskeleton guarantees the safety of the operator in any working modality, while reducing effort and ensuring functionality and comfort even in case of possible misclassification of the EEG instances. Tests on different subjects with simulated movement prediction values were performed in order to prove that the integration of EEG signals into the control architecture can significantly smooth the transition between the control states of the exoskeleton, as revealed by a significant decrease in the interaction force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Recomputed from pseudo-online results of 2 subjects presented in [19].

  2. Trials from −1000 to −850 ms are considered as no movement preparation and trials from −300 to −150 are considered as movement preparation.

References

  1. Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105(PT.2):331–348

    Article  Google Scholar 

  2. Alamgir M, Grosse-Wentrup M, Altun Y (2010) Multi-task learning for Brain-Computer Interfaces. In: Proceedings of the 13th international conference on artificial intelligence and statistics. JMLR: workshop and conference proceedings, vol 9

    Google Scholar 

  3. Apolloni B, Malchiodi D, Mesiano C (2004) An attention monitoring system for high demanding operational tasks. In: Computational intelligence for homeland security and personal safety. CIHSPS 2004. Proceedings of the 2004 IEEE international conference, pp 23–29

    Chapter  Google Scholar 

  4. Bai O, Rathi V, Lin P, Huang D, Battapady H, Fei DY, Schneider L, Houdayer E, Chen X, Hallett M (2011) Prediction of human voluntary movement before it occurs. Clin Neurophysiol 122(2):364–372. doi:16/j.clinph.2010.07.010

    Article  Google Scholar 

  5. Bergamasco M, Allotta B, Bosio L, Ferretti L, Parrini G, Prisco G, Salsedo F, Sartini G (1994) An arm exoskeleton system for teleoperation and virtual environments applications. In: Robotics and automation, proceedings, 1994 IEEE international conference, vol 2, pp 1449–1454. doi:10.1109/ROBOT.1994.351286

    Google Scholar 

  6. Birbaumer N (2006) Breaking the silence: brain–computer interfaces (BCI) for communication and motor control. Psychophysiology 6(43):517–532

    Article  Google Scholar 

  7. Blankertz B, Curio G, Müller K (2002) Classifying single trial EEG: towards brain computer interfacing. In: Advances in neural information processing systems 14: proceedings of the 2001 conference, pp 157–164. MIT Press, Cambridge

    Google Scholar 

  8. Blankertz B, Dornhege G, Schäfer C, Krepki R, Kohlmorgen J, Müller K, Kunzmann V, Losch F, Curio G (2003) Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. IEEE Trans Neural Syst Rehabil Eng 11(2):127

    Article  Google Scholar 

  9. Blankertz B, Dornhege G, Lemm S, Krauledat M, Curio G, Müller KR (2006) The Berlin brain–computer interface: machine learning based detection of user specific brain states. J Univers Comput Sci 12(6):581–607

    Google Scholar 

  10. Borghesan G, Melchiorri C (2008) Model and modeless friction compensation: application to a defective haptic interface. In: Lecture notes in computer science, vol 5024. Springer, Berlin, pp 94–103

    Google Scholar 

  11. Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2:27:1–27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

    Google Scholar 

  12. Fazli S, Popescu F, Danóczy M, Blankertz B, Müller K, Grozea C (2009) Subject-independent mental state classification in single trials. Neural Netw 22(9):1305–1312. doi:10.1016/j.neunet.2009.06.003

    Article  Google Scholar 

  13. Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703

    Google Scholar 

  14. Fleischer C, Wege A, Kondak K, Hommel G (2006) Application of emg signals for controlling exoskeleton robots. Biomed Tech (Berl, Z) 51(5–6):314–319

    Article  Google Scholar 

  15. Folgheraiter M, Bongardt B, Albiez J, Kirchner F (2008) A bio-inspired haptic interface for tele-robotics applications. In: IEEE international conference on robotics and biomemetics (ROBIO-2008), Thailand, Bangkok

    Google Scholar 

  16. Folgheraiter M, Bongardt B, Schmidt S, de Gea Fernandéz J, Albiez J, Kirchner F (2009) Design of an arm exoskeleton using an hybrid motion-capture and model-based technique. In: IEEE international conference on robotics and automation (ICRA-2009), May 12–17, 2009, Kobe, Japan

    Google Scholar 

  17. Folgheraiter M, de Gea Fernandéz J, Bongardt B, Albiez J, Kirchner F (2009) Bio-inspired control of an arm exoskeleton joint with active-compliant actuation system. Appl Bionics Biomech 6(2):193–204

    Article  Google Scholar 

  18. Folgheraiter M, Jordan M, Benitez LMV, Grimminger F, Schmidt S, Albiez J, Kirchner F (2011) Development of a low-pressure fluidic servo-valve for wearable haptic interfaces and lightweight robotic systems, 1st edn. In: Lecture notes in electrical engineering, vol 89. Springer, Berlin. ISBN 978-3-642-19538-9

    Google Scholar 

  19. Folgheraiter M, Kirchner EA, Seeland A, Kim SK, Jordan M, Wöhrle H, Bongardt B, Schmidt S, Albiez J, Kirchner F (2011) A multimodal brain-arm interface for operation of complex robotic systems and upper limb motor recovery. In: Proc 4th int conf biomedical electronics and devices, Rome

    Google Scholar 

  20. Hayashi T, Kawamoto H, Sankai Y (2005) Control method of robot suit hal working as operator’s muscle using biological and dynamical information. In: Intelligent robots and systems (IROS 2005). 2005 IEEE/RSJ international conference, pp 3063–3068. doi:10.1109/IROS.2005.1545505

    Chapter  Google Scholar 

  21. Herrmann G, Melhuish C (2010) Towards safety in human robot interaction. Int J Soc Robot 2(3):217–219

    Article  Google Scholar 

  22. Hesse S, Schmidt H, Werner C, Bardeleben A (2003) Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol 16(6):705–710

    Article  Google Scholar 

  23. Homan RW, Herman J, Purdy P (1987) Cerebral location of international 10-20 system electrode placement. Electroencephalogr Clin Neurophysiol 66(4):376–382

    Article  Google Scholar 

  24. Ibáñez J, Serrano J, del Castillo M, Barrios L, Gallego J, Rocon E (2011) An EEG-based design for the online detection of movement intention. Adv Comput Intell 370–377

  25. Kirchner EA, Metzen JH, Duchrow T, Kim SK, Kirchner F (2009) Assisting telemanipulation operators via real-time Brain Reading. In: Lemgoer Schriftenreihe zur industriellen Informationstechnik, Paderborn

    Google Scholar 

  26. Kirchner EA, Wöhrle H, Bergatt C, Kim SK, Metzen JH, Kirchner F (2010) Towards operator monitoring via brain reading—an eeg-based approach for space applications. In: Proceedings of the 10th international symposium on artificial intelligence, robotics and automation in space

    Google Scholar 

  27. Kornhuber H, Deecke L (1965) Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Plügers Archiv gesamte Physiol Menschen Tiere 284:1–17

    Article  Google Scholar 

  28. Krauledat M, Tangermann M, Blankertz B, Müller K (2008) Towards zero training for Brain-Computer interfacing. PLoS ONE 3(8):e2967. doi:10.1371/journal.pone.0002967

    Article  Google Scholar 

  29. Labonte D, Boissy P, Michaud F (2010) Comparative analysis of 3-d robot teleoperation interfaces with novice users. IEEE Trans Syst Man Cybern, Part B, Cybern 40(5):1331–1342. doi:10.1109/TSMCB.2009.2038357

    Article  Google Scholar 

  30. Li Y, Gao X, Liu H, Gao S (2004) Classification of single-trial electroencephalogram during finger movement. IEEE Trans Biomed Eng 51(6):1019–1025

    Article  Google Scholar 

  31. Li Y, Guan C, Li H, Chin Z (2008) A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system. Pattern Recognit Lett 29(9):1285–1294. doi:10.1016/j.patrec.2008.01.030

    Article  Google Scholar 

  32. Mataric MJ (1994) Learning motor skills by imitation. In: AAAI spring symposium toward physical interaction and manipulation. Stanford University

    Google Scholar 

  33. Metzen JH, Kim SK, Kirchner EA (2011) Minimizing calibration time for brain reading. In: Mester R, Felsberg M (eds) Pattern recognition. Lecture notes in computer science, vol 6835. Springer, Berlin/Heidelberg, pp 366–375

    Chapter  Google Scholar 

  34. Millán JR, Galán F, Vanhooydonck D, Lew E, Philips J, Nuttin M (2009) Asynchronous non-invasive brain-actuated control of an intelligent wheelchair. In: Proc 31st annu conf IEEE eng med biol soc, Minneapolis, MN, pp 3361–3364

    Chapter  Google Scholar 

  35. Morash V, Bai O, Furlani S, Lin P, Hallett M (2008) Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Clin Neurophysiol 119(11):2570–2578. doi:16/j.clinph.2008.08.013

    Article  Google Scholar 

  36. Ott R, Gutiérrez M, Thalmann D, Vexo F (2005) Improving user comfort in haptic virtual environments trough gravity compensation. In: Proceedings of the first joint eurohaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems. IEEE Computer Society Press, Los Alamitos, pp 401–409

    Chapter  Google Scholar 

  37. Perry J, Rosen J, Burns S (2007) Upper-limb powered exoskeleton design. IEEE/ASME Trans Mechatron 12(4):408–417. doi:10.1109/TMECH.2007.901934

    Article  Google Scholar 

  38. Pfurtscheller G, Müller-Putz G, Scherer R, Neuper C (2008) Rehabilitation with brain–computer interface systems. Computer 41(10):58–65

    Article  Google Scholar 

  39. Rao SM, Binder JR, Hammeke TA, Bandettini PA, Bobholz JA, Frost JA, Myklebust BM, Jacobson RD, Hyde JS (1995) Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging. Neurology 45(5):919–924

    Article  Google Scholar 

  40. Rao S, Carloni R, Stramigioli S (2010) Stiffness and position control of a prosthetic wrist by means of an emg interface. In: Engineering in medicine and biology society (EMBC), 2010 annual international conference of the IEEE, pp 495–498

    Chapter  Google Scholar 

  41. Repperger D, Remis S, Merrill G (1990) Performance measures of teleoperation using an exoskeleton device. In: Robotics and automation, proceedings, 1990 IEEE international conference on, vol 1, pp 552–557. doi:10.1109/ROBOT.1990.126038

    Google Scholar 

  42. Riley JM, Kaber DB, Draper JV (2004) Situation awareness and attention allocation measures for quantifying telepresence experiences in teleoperation. Hum Factors Ergon Manuf Service Ind 14(1):51–67. doi:10.1002/hfm.10050. URL http://dx.doi.org/10.1002/hfm.10050

    Article  Google Scholar 

  43. Rocon E, Ruiz A, Pons J, Belda-Lois J, Sanchez-Lacuesta J (2005) Rehabilitation robotics: a wearable exo-skeleton for tremor assessment and suppression. In: Robotics and automation, ICRA 2005. Proceedings of the 2005 IEEE international conference on, pp 2271–2276. doi:10.1109/ROBOT.2005.1570451

    Chapter  Google Scholar 

  44. Ronsse R, Vitiello N, Lenzi T, van den Kieboom J, Carrozza M, Ijspeert A (2011) Human–robot synchrony: flexible assistance using adaptive oscillators. IEEE Trans Biomed Eng 58(4):1001–1012

    Article  Google Scholar 

  45. Rosen J, Brand M, Fuchs M, Arcan M (2001) A myosignal-based powered exoskeleton system. IEEE Trans Syst Man Cybern, Part A, Syst Hum 31(3):210–222. doi:10.1109/3468.925661

    Article  Google Scholar 

  46. Rosen J, Perry J, Manning N, Burns S, Hannaford B (2005) The human arm kinematics and dynamics during daily activities—toward a 7 dof upper limb powered exoskeleton. In: Advanced robotics. ICAR’05, proceedings, 12th international conference on, pp 532–539. doi:10.1109/ICAR.2005.1507460

    Chapter  Google Scholar 

  47. Santucci E, Balconi E (2009) The multicomponential nature of movement-related cortical potentials: functional generators and psychological factors. Neuropsychol Trends 5:59–84

    Google Scholar 

  48. Schiele A (2009) Ergonomics of exoskeletons: Subjective performance metrics. In: Intelligent robots and systems, IROS 2009. IEEE/RSJ international conference on, pp 480–485. doi:10.1109/IROS.2009.5354029

    Chapter  Google Scholar 

  49. Schiele A, van der Helm F (2006) Kinematic design to improve ergonomics in human machine interaction. IEEE Trans Neural Syst Rehabil Eng 14(4):456–469

    Article  Google Scholar 

  50. Stastn J, Sovka P High-resolution movement EEG classification. Comput Intell Neurosci 54925 (2007)

  51. Tsagarikis N, Jafari A, Caldwell D (2010) A novel variable stiffness actuator: minimizing the energy requirements for the stiffness regulation. In: Engineering in medicine and biology society (EMBC). 2010 annual international conference of the IEEE, pp 1275–1278. doi:10.1109/IEMBS.2010.5626413

    Google Scholar 

  52. Vallery H, Veneman J, van Asseldonk E, Ekkelenkamp R, Buss M, van Der Kooij H (2008) Compliant actuation of rehabilitation robots. IEEE Robot Autom Mag 15(3):60–69. doi:10.1109/MRA.2008.927689

    Article  Google Scholar 

  53. Van Den Broek E, Lisý V, Westerink J, Schut M, Tuinenbreijer K (2009) Biosignals as an advanced man-machine interface. In: Proceedings of the second international conference on health informatics, HEALTHINF 2009, Porto, Portugal, pp 15–24

    Google Scholar 

  54. Wang B, Wan F (2009) Classification of Single-Trial EEG based on support vector clustering during finger movement. Adv neural netw, ISNN 2009, 354–363

  55. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    Article  Google Scholar 

  56. Zander TO, Kothe C (2011) Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. J Neural Eng 8(2):025005

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Bundesministerium für Bildung und Forschung (BMBF, grant FKZ 01IW10001), and the German Bundesministerium für Wirtschaft und Technologie (BMWi, grant FKZ 50 RA 1012 and grant FZK 50 RA 1011). We would also like to thank all the people that took part in the experimental phase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Folgheraiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folgheraiter, M., Jordan, M., Straube, S. et al. Measuring the Improvement of the Interaction Comfort of a Wearable Exoskeleton. Int J of Soc Robotics 4, 285–302 (2012). https://doi.org/10.1007/s12369-012-0147-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-012-0147-x

Keywords

Navigation