Skip to main content

Advertisement

Log in

Short-Term Soil CO2 Emission and Soil Attributes Under Contrasting Sugarcane Cultivars

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Agriculture is a great emission source of CO2 into the atmosphere, contributing significantly to the greenhouse effect. Considering the hypothesis that there are differences in soil carbon dynamics due to the distinct physiological and morphological characteristics of sugarcane cultivars, the aim of this study was to characterize the short-term soil CO2 emission associated with soil attributes in agricultural areas under cultivation of five sugarcane cultivars. The experiment was conducted in an area of high-clay Oxisol (Hapludox, USDA Soil Taxonomy) located at the Cerrado biome, Midwestern region of Brazil. Over the course of 20 days, ten measurements of soil CO2 emission (FCO2), soil temperature (Ts), and soil moisture (Ms) were carried out. Subsequently, soil samples were collected at a depth of 0–0.20 m to determine soil physical and chemical attributes. In timescale, FCO2, Ts, and Ms varied depending on the amount of straw produced by each cultivar. The cultivars RB935608, RB935744, and SP832847 induced a higher soil CO2 emission since they are associated with controlling factors of the primary CO2 production process (higher organic matter content and lower C/N ratio in the soil). Thus, strategies to reduce greenhouse gas emissions in agriculture, such as the choice of sugarcane cultivars that provide lower soil CO2 emissions, are essential to mitigate important environmental issues such as the global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Acreche, M.M., R. Portocarrero, J. Chalco Vera, C. Danert, and A.H. Valeiro. 2013. Greenhouse gas emissions from green-harvested sugarcane with and without post-harvest burning in Tucumán, Argentina. Sugar Tech 16 (2): 195–199.

    Article  Google Scholar 

  • Amaral, J.A.M., E.P. Motchi, H. Oliveira, A.C. Filho, U.J. Naime, and R.D. Santos. 2000. Levantamento semidetalhado dos solos do Campo Experimental de Dourados da Embrapa Agropecuária Oeste, município de Dourados-MS. Dourados: Embrapa Agropecuária Oeste.

    Google Scholar 

  • Bahia, A.S.R.S., J. Marques Jr., A.R. Panosso, L.A. Camargo, D.D.B. Teixeira, D.S. Siqueira, and N. La Scala. 2015. Spatial correlation between iron oxides and CO2 emission in an Oxisol under sugarcane. Scientia Agricola 72 (2): 157–166.

    Article  CAS  Google Scholar 

  • Ball, B.C., and K.A. Smith. 1991. Gas movement. In Soil analysis: Physical methods, ed. K.A. Smith, and C.E. Mullins. New York: Marcel Dekker.

    Google Scholar 

  • Bayer, C., L. Martin-Neto, J. Mielniczuk, A. Pavinato, and J. Dieckow. 2006. Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil and Tillage Research 86 (2): 237–245.

    Article  Google Scholar 

  • Bicalho, E.S., A.R. Panosso, D.D.B. Teixeira, J.G.V. Miranda, G.T. Pereira, and N. La Scala. 2014. Spatial variability structure of soil CO2 emission and soil attributes in a sugarcane area. Agriculture, Ecosystems & Environment 189: 206–215.

    Article  CAS  Google Scholar 

  • Brito, L.F., J. Marques Jr., G.T. Pereira, Z.M. Souza, and N. La Scala. 2009. Soil CO2 emission of sugarcane field as affected by topography. Scientia Agricola 66 (1): 77–83.

    Article  CAS  Google Scholar 

  • Canellas, L.P., J.G. Busato, L.B. Dobbs, M.A. Baldotto, V.M. Rumjanek, and F.L. Olivares. 2010. Soil organic matter and nutrient pools under long-term non-burning management of sugar cane. European Journal Soil Science 61 (3): 375–383.

    Article  CAS  Google Scholar 

  • Carbonell-Bojollo, R.M., M.A. Repullo-Ruibérriz, A. Rodríguez-Lizana, and R. Ordóñez-Fernández. 2012. Influence of soil and climate conditions on CO2 emissions from agricultural soils. Water, Air and Soil Pollution 223 (6): 3425–3435.

    Article  CAS  Google Scholar 

  • Carvalho, J.L.N., J.C. Avanzi, M.L.N. Silva, C.R. Melo, and C.E.P. Cerri. 2010. Potencial de sequestro de carbono em diferentes biomas do Brasil. Revista Brasileira de Ciência do Solo 34 (2): 277–290.

    Article  CAS  Google Scholar 

  • Ctc—Centro de Tecnologia Canavieira. 2013. Variedades CTC. http://www.coplana.com/gxpfiles/ws001/design/Download/VariedadesCana/Variedade_CTC_115.pdf. Accessed 28 Jan 2016.

  • Cerri, C.E.P., M.V. Galdos, J.L.N. Carvalho, B.J. Feigl, and C.C. Cerri. 2013. Quantifying soil carbon stocks and greenhouse gas fluxes in the sugarcane agrosystem: point of view. Scientia Agricola 70 (5): 361–368.

    Article  CAS  Google Scholar 

  • Conab—Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira: cana-de-açúcar, segundo levantamento, 2017/2018. Brasília: Conab.http://www.conab.gov.br/OlalaCMS/uploads/arquivos/17_08_24_08_59_54_boletim_cana_portugues_-_2o_lev_-_17-18.pdf. Accessed 9 Nov 2017.

  • Davidson, E.A., L.V. Verchot, H. Cattânio, I.L. Ackerman, and E.M. Carvalho. 2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48 (1): 53–69.

    Article  CAS  Google Scholar 

  • Dominy, C.S., R.J. Haynes, and R. Van Antwerpen. 2002. Loss of soil organic matter and related soil properties under long-term sugarcane production on two contrasting soil. Biology and Fertility of Soils 36 (5): 350–356.

    Article  CAS  Google Scholar 

  • Dorodnikov, M., Y. Kuzyakov, A. Fangmeier, and G.L.B. Wiesenberg. 2011. C and N in soil organic matter density fractions under elevated atmospheric CO2: Turnover vs stabilization. Soil Biology and Biochemistry 43 (3): 579–589.

    Article  CAS  Google Scholar 

  • Embrapa—Empresa Brasileira de Pesquisa Agropecuária. 1997. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. edn. 2. Brasília: Ministério da Agricultura e do Abastecimento.

  • Epron, D., A. Bosc, D. Bonal, and V. Freycon. 2006. Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana. Journal of Tropical Ecology 22 (5): 565–574.

    Article  Google Scholar 

  • Faostat—Food and Agriculture Organization of the United Nations. Statistics Division. 2014. http://faostat3.fao.org/download/Q/QC/E. Accessed 10 Nov 2015.

  • Figueiredo, E.B., A.R. Panosso, R. Romão, and N. La Scala. 2010. Research Greenhouse gas emission associated with sugar production in southern Brazil. Carbon Balance and Management 5 (3): 1–7.

    Google Scholar 

  • Fuentes, J.P., D.F. Bezdicek, M. Flury, S. Albrecht, and J.L. Smith. 2006. Microbial activity affected by lime in a long-term no-till soil. Soil and Tillage Research 88 (1–2): 123–131.

    Article  Google Scholar 

  • Galdos, M.V., C.C. Cerri, and C.E.P. Cerri. 2009. Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 153 (3–4): 347–352.

    Article  CAS  Google Scholar 

  • Graham, M.H., and R.J. Haynes. 2006. Organic matter status and the size, activity and metabolic diversity of the soil microbial community in the row and inter-row of sugarcane under burning and trash retention. Soil Biology & Biochemistry 38 (1): 21–31.

    Article  CAS  Google Scholar 

  • Hair, J.F., W.C. Black, B.J. Babin, R.E. Anderson, and R.L. Tatham. 2005. Análise multivariada de dados, 5th ed. Porto Alegre: Bookman.

    Google Scholar 

  • IPCC—Intergovernmental Panel on Climate Change. 2007. Climate Change 2007: Mitigation. Contribution of Working Group III. Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press.

  • IPCC—Intergovernmental Panel on Climate Change. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva: IPCC.

  • Jeffers, J.N.R. 1978. An introduction to system analysis: With ecological applications. London: E. Arnold Publ.

    Google Scholar 

  • Kaiser, H.F. 1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika 23 (3): 187–200.

    Article  Google Scholar 

  • Kang, S., S. Doh, D. Lee, D. Lee, V.L. Jin, and J. Kimball. 2003. Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology 9 (10): 1427–1437.

    Article  Google Scholar 

  • La Scala, N., J. Marques Jr., G.T. Pereira, and J.E. Corá. 2000. Short-term temporal changes in the spatial variability model of CO2 emissions from a Brazilian bare soil. Soil Biology & Biochemistry 32 (10): 1459–1462.

    Article  Google Scholar 

  • La Scala, N., D. Bolonhezi, and G.T. Pereira. 2006. Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. Soil and Tillage Research 91 (1–2): 244–248.

    Article  Google Scholar 

  • Lal, R. 2001. World cropland soils as a source or sink for atmospheric carbon. Advances in Agronomy 71: 145–191.

    Article  Google Scholar 

  • Lal, R. 2009. Challenges and opportunities in soil organic matter research. European Journal Soil Science 60 (2): 158–169.

    Article  CAS  Google Scholar 

  • Linn, D.M., and J.W. Doran. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and non-tilled soils. Soil Science Society of America Journal 48 (6): 1267–1272.

    Article  CAS  Google Scholar 

  • Lou, Y., W. Liang, M. Xu, X. Ele, Y. Wang, and K. Zhao. 2011. Straw coverage alleviates seasonal variability of the topsoil microbial biomass and activity. CATENA 86 (2): 117–120.

    Article  CAS  Google Scholar 

  • Lu, H., S. Sun, L. Ren, and L. He. 2015. GHG emission control and solid waste management for megacities with inexact inputs: a case study in Beijing, China. Journal of Hazardous Materials 284: 2–102.

    Google Scholar 

  • Luca, E.F., C. Feller, C.C. Cerri, B. Barthès, V. Chaplot, D.C. Campos, and C. Manechini. 2008. Avaliação de atributos físicos e estoques de carbono e nitrogênio em solos com queima e sem queima de canavial. Revista Brasileira de Ciência do Solo 32 (2): 789–800.

    Article  Google Scholar 

  • Malavolta, E. 2006. Manual de nutrição mineral de plantas. São Paulo: Ceres.

    Google Scholar 

  • Ohashi, M., and K. Gyokusen. 2007. Temporal change in spatial variability of soil respiration on a slope of Japanese cedar (Cryptomeria japonica D. Don) forest. Soil Biology & Biochemistry 39 (5): 1130–1138.

    Article  CAS  Google Scholar 

  • Ordóñez-Fernández, R., R. Carbonell Bojollo, P. González-Fernández, and F. Perea Torres. 2008. Influencia de la climatología y el manejo del suelo en las emisiones de CO2 en un suelo arcilloso de la vega de Carmona. Carel 6: 2339–2354.

    Google Scholar 

  • Panosso, A.R., J. Marques Jr., G.T. Pereira, and N. La Scala. 2009. Spatial and temporal variability of soil CO2 emission in a sugarcane area under green and slash-and-burn managements. Soil and Tillage Research 105 (2): 275–282.

    Article  Google Scholar 

  • Panosso, A.R., J. Marques Jr., D.M.B.P. Milori, A.S. Ferraudo, D.M. Barbieri, G.T. Pereira, and N. La Scala. 2011. Soil CO2 emission and its relation to soil properties in sugarcane areas under Slash-and-burn and Green harvest. Soil and Tillage Research 111 (2): 190–196.

    Article  Google Scholar 

  • Razafimbelo, T., B. Barthès, M.C. Larré-Larrouy, E.F. De Luca, J.Y. Laurent, C.C. Cerri, and C. Feller. 2006. Effect of sugarcane residue management (mulching versus burning) on organic matter in a clayey Oxisol from southern Brazil. Agriculture, Ecosystems & Environment 115 (1–4): 285–289.

    Article  Google Scholar 

  • Resende, A.S., R.P. Xavier, O.C. de Oliveira, S. Urquiaga, B.J.R. Alves, and R.M. Boddey. 2006. Long-term effects of pre-harvest burning and nitrogen and vinasse applications on yield of sugarcane and soil carbon and nitrogen stocks on a plantation in Pernambuco, N.E. Brazil. Plant and Soil 281 (1–2): 339–351.

    Article  CAS  Google Scholar 

  • Ridesa—Rede Interuniversitária para o Desenvolvimento do Setor Sucroalcooleiro. 2010. Catálogo nacional de variedades “RB” de cana-de-acúcar. Curitiba: Ridesa.

    Google Scholar 

  • Robertson, F.A., and P.J. Thorburn. 2001. Crop residue effects on soil C and N cycling under sugarcane. In Sustainable management of soil organic matter, ed. R.M. Rees, B.C. Ball, C.D. Campbell, and C.A. Watson, 112–119. Wallingford: CAB International.

    Google Scholar 

  • Roscoe, R., and P. Buurman. 2003. Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol. Soil and Tillage Research 70 (2): 107–119.

    Article  Google Scholar 

  • Santiago, A.D., and R. Rossetto. 2008. Árvore do Conhecimento: cana-de-açúcar. http://www.agencia.cnptia.embrapa.br/gestor/canadeacucar/arvore/CONTAG01_141_22122006154842.html. Accessed 10 Nov 2015.

  • Schwartz, R.C., R.L. Baumhardt, and S.R. Evett. 2010. Tillage effects on soil water redistribution and bare soil evaporation throughout a season. Soil and Tillage Research 110 (2): 221–229.

    Article  Google Scholar 

  • Schwendenmann, L., E. Veldkamp, T. Brenes, J.J. O’Brien, and J. Mackensen. 2003. Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica. Biogeochemistry 64 (1): 111–128.

    Article  CAS  Google Scholar 

  • Silva-Olaya, A.M., C.E.P. Cerri, N. La Scala, C.T.S. Dias, and C.C. Cerri. 2013. Carbon dioxide emissions under different soil tillage systems in mechanically harvested sugarcane. Environmental Research Letters 8 (1): 1–8.

    Article  Google Scholar 

  • Six, J., S.D. Frey, R.K. Thies, and K.M. Batten. 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal 70: 555–569.

    Article  CAS  Google Scholar 

  • Sneath, P.H.A., and R.R. Sokal. 1973. Numerical taxonomy. San Francisco: Freeman and Co.

    Google Scholar 

  • Stoyan, H., H. De-Polli, S. Böhm, G.P. Robertson, and E.A. Paul. 2000. Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant and Soil 222 (1–2): 203–214.

    Article  CAS  Google Scholar 

  • Teixeira, D.D.B., E.S. Bicalho, A.R. Panosso, L.I. Perillo, J.L. Iamaguti, G.T. Pereira, and N. La Scala. 2012. Uncertainties in the prediction of spatial variability of soil CO2 emissions and related properties. Revista Brasileira de Ciência do Solo 36 (5): 1466–1475.

    Article  CAS  Google Scholar 

  • Teixeira, D.D.B., E.S. Bicalho, C.E.P. Cerri, A.R. Panosso, G.T. Pereira, and N. La Scala. 2013. Quantification of uncertainties associated with space-time estimates of short-term soil CO2 emissions in a sugar cane area. Agriculture, Ecosystems & Environment 167: 33–37.

    Article  CAS  Google Scholar 

  • Teixeira, L.G., A. Lopes, and N. La Scala. 2010. Temporal variability of soil CO2 emission after conventional and reduced tillage described by an exponential decay in time model. Engenharia Agrícola 30 (2): 224–231.

    Article  Google Scholar 

  • Tominaga, T.T., F.A.M. Cássaro, O.O.S. Bacchi, K. Reichardt, J.C.M. Oliveira, and L.C. Timm. 2002. Variability of soil water content and bulk density in a sugarcane field. Australian Journal of Soil Research 40: 605–614.

    Article  Google Scholar 

  • Ussiri, A.N., and R. Lal. 2009. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil and Tillage Research 104 (1): 39–47.

    Article  Google Scholar 

  • Vargas, V.P., H. Cantarella, A.A. Martins, J.R. Soares, J.B. do Carmo, and C.A. de Andrade. 2014. Sugarcane crop residue increases N2O and CO2 emissions under high soil moisture conditions. Sugar Tech 16 (2): 174–179.

    Article  CAS  Google Scholar 

  • Zhang, L., J. Zheng, L. Chenb, M. Shenc, X. Zhang, M. Zhanga, X. Biana, J. Zhang, and W. Zhan. 2015. Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice–Wheat cropping system. European Journal of Agronomy 63: 47–54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Regina Moitinho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moitinho, M.R., Padovan, M.P., da Silva Bicalho, E. et al. Short-Term Soil CO2 Emission and Soil Attributes Under Contrasting Sugarcane Cultivars. Sugar Tech 20, 658–668 (2018). https://doi.org/10.1007/s12355-018-0595-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-018-0595-1

Keywords

Navigation