Skip to main content
Log in

Fuel Ethanol Production from Molasses by Indigenous Yeast Isolates

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

A total of 14 newly isolated, indigenous yeast strains from molasses and grapes, along with the control yeasts D1–D3, were investigated for ethanol production abilities and related parameters like ethanol and sugar tolerance. Strains M1, M5, M9, M12 and M15 were found ethanol resistant up to 12 % ethanol and yeast strains G1, G2, M1, M5, M6, M11, M12 and M15 showed resistance up to 20 % (w/v) glucose concentration. Among new isolates M12 gave maximum alcohol, [9.13 % (v/v)] with pure glucose followed by M15 [8.43 % (v/v)], M1 [7.37 % (v/v)] and M6 [7.26 % (v/v)] in 72 h. Ethanol productivity, after 24 h, was found to be maximum in case of M12, M3, M6, M5 and M15, in reducing order, ranging from 1.08 to 1.37 gethanol/100 gsubstrate/h and ethanol yield after 72 h was maximum in case of M12, M15, M1 and M6 ranging from 38.15 to 47.97 gethanol/100 gsubstrate. All the newly isolated strains lag behind control strains D1–D3 in productivity (1.32–1.98 gethanol/100 gsubstrate/h) as well as in yield (47.55–47.92 gethanol/100 gsubstrate). Sugarcane molasses medium having 15–16 % fermentable sugars along with other yeast nutrients, was further tested for alcohol production at 30 °C under stationary conditions, by selected yeast strains M1, M5–M7, M12 and M15, added at 0.25 % (w/v) on wet weight basis. Except M1, M5 and M12, all the strains, including control strains, produced considerable amount of alcohol ranging from 8.12 to 9.14 % (v/v) in 48 h but, simultaneous generation of high yeast biomass calls for optimization of fermentation parameters, especially aeration and agitation, for improved ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aggarwal, N.K., S.K. Yadav, S.S. Dhamija, and B.S. Yadav. 2001. Optimization of enzymatic hydrolysis of pearl millet for glucose production. Starch 53(7): 330–335.

    Article  CAS  Google Scholar 

  • Alexandre, H., I. Rousseaux, and C. Charpentier. 1994. Ethanol adaptation mechanisms in Saccharomyces cerevisiae. Biotechnology and Applied Biochemistry 20: 173–183.

    PubMed  CAS  Google Scholar 

  • AOAC. 1975. Official methods of analysis. Washington, DC: Association of Analytical Chemists.

    Google Scholar 

  • Arias, C.R., J.K. Burns, L.M. Friedrich, R.M. Goodrich, and M.E. Parish. 2002. Yeast species associated with orange juice: Evaluation of different identification methods. Applied and Environmental Microbiology 68: 1955–1961.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Atiyeh, H., and Z. Duvnjak. 2003. Production of fructose and ethanol from cane molasses using Saccharomyces cerevisiae ATCC 36858. Acta Biotechnology 23(1): 37–48.

    Article  CAS  Google Scholar 

  • Bansal, R., and R.S. Singh. 2003. A comparative study on ethanol production from molasses using Saccharomyces cerevisiae and Zymomonas mobilis. Indian Journal of Microbiology 43: 261–264.

    Google Scholar 

  • Beaven, M.J., C. Charpentier, and A.H. Rose. 1982. Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC. Journal of General Microbiology 128: 1447–1455.

    CAS  Google Scholar 

  • Brown, S.W., S.G. Oliver, D.E.F. Harrison, and R.C. Righelato. 1981. Ethanol inhibition of yeast growth and fermentation: Differences in the magnitude and complexity of the effect. Applied Microbiology and Biotechnology 11(3): 151–155.

    Article  CAS  Google Scholar 

  • Caputi, A., J.M. Ueda, and T. Brown. 1968. Spectrophotometric determination of chromic complex formed during oxidation of alcohol. American Journal of Enology and Viticulture 19: 160–165.

    CAS  Google Scholar 

  • Chi, Z., and N. Arneborg. 1999. Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. Journal of Applied Microbiology 86: 1047–1052.

    Article  PubMed  CAS  Google Scholar 

  • Echegaray, O.F., J.C.M. Carvalho, A.N.R. Fernandes, S. Sato, E. Aquarone, and M. Vitolo. 2000. Fed-batch culture of Saccharomyces cerevisiae in sugar-cane blackstrap molasses: Invertase activity of intact cells in ethanol fermentation. Biomass and Bioenergy 19: 39–50.

    Article  CAS  Google Scholar 

  • Gasmalla, M.A.A., R. Yang, M. Nikoo, and S. Man. 2012. Production of ethanol from Sudanese sugarcane molasses and evaluation of its quality. Journal of Food Processing and Technology 3(7): 163.

    CAS  Google Scholar 

  • Ibeas, J.I., and J. Jimenez. 1997. Mitochondrial DNA loss caused by ethanol in Saccharomyces flor yeasts. Applied and Environmental Microbiology 63: 7–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kajiwara, S., A. Shirai, T. Fujii, T. Toguri, K. Nakamura, and K. Ohtaguchi. 1996. Polyunsaturated fatty acid biosynthesis in Saccharomyces cerevisiae: Expression of ethanol tolerance and the FAD2FAD2 gene from Arabidopsis thaliana. Applied and Environmental Microbiology 62: 4309–4313.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kim, S., and B.E. Dale. 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy 4: 361–375.

    Article  Google Scholar 

  • Kim, H.S., N.R. Kim, and W. Choi. 2011. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation. Biotechnology Letters 33(3): 509–515.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, F., T. Sawada, Y. Nakamura, M. Ohnaga, M. Godliving, and T. Ushiyama. 1998. Saccharification and alcohol fermentation in starch solution of steam exploded potato. Applied Biochemistry and Biotechnology 69(3): 177–189.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, A., H. Shigechi, M. Abe, K. Oyama, and H. Fakuda. 2002. High level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Applied Microbiology and Biotechnology 58(3): 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Loyce, C., J.P. Rellier, and J.M. Meynard. 2002. Management planning for winter wheat with multiple objective: Ethanol wheat production. Agricultural Systems 72(1): 33–57.

    Article  Google Scholar 

  • Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31: 426–428.

    Article  CAS  Google Scholar 

  • Mishra, P., and R. Prasad. 1989. Relationship between ethanol tolerance and fatty acyl composition of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 30: 294–298.

    Article  CAS  Google Scholar 

  • Mussatto, S.I., G. Dragone, and P.M.R. Guimarães. 2010. Technological trends, global market, and challenges of bioethanol production. Biotechnology Advances 28(6): 817–830.

    Article  PubMed  CAS  Google Scholar 

  • Ok, T., and F. Hashinaga. 1997. Identification of sugar-tolerant yeasts isolated from high-sugar fermented vegetable extracts. Journal of General and Applied Microbiology 43(1): 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Patrascu, E., G. Rapeanu, C. Bonciu, and T. Hopulele. 2009. Bioethanol production from molasses by different strains of Saccharomyces cerevisiae. Paper presented at the International Symposium Euro-aliment 2009, 9–10 October 2009, Galati, Romania. The Annals of the University Dunarea de Jos of Galati. Fascicle VI: Food Technology, New Series Year III(XXXIII): 49–56.

    Google Scholar 

  • Qureshi, S.K., T. Masuadi, and S. Sammi. 2007. Isolation and taxonomic characterization of yeast strains on the basis of maltose utilization capacity for bread making. International Journal of Agriculture and Biology 9(1): 110–113.

    Google Scholar 

  • Reimelt, S., F. Winkler, K. Mogel, and M. Kirchhof. 2002. Bioethanol technology of Lurgi Life Science. Zuckerindustrie 127(10): 770–781.

    CAS  Google Scholar 

  • Sajbidor, J., Z. Ciesarova, and D. Smogrovicova. 1995. Influence of ethanol on the lipid content and fatty acid composition of Saccharomyces cerevisiae. Folia Microbiology 40: 508–510.

    Article  CAS  Google Scholar 

  • Sanches, E.N., E.M. Alhadeff, M.H.M. Rocha-Leão, and J.N. Pereira. 1996. Performance of a continuous bioreactor with immobilized yeast cells in the ethanol fermentation of molasses-stillage medium. Biotechnology Letters 18: 91–94.

    Article  Google Scholar 

  • Sánchez, O.J., and C.A. Cardona. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology 99(13): 5270–5295.

    Article  PubMed  Google Scholar 

  • Savova, I., and M. Nikolova. 2002. Isolation and taxonomic study of yeast strains from Bulgarian dairy products. Journal of Culture Collection 3: 59–65.

    Google Scholar 

  • Sheela, S.H., M.F. Ahmed, and D.J. Gomes. 2008. Fuel ethanol production from molasses by some indigenous yeast isolates. Bangladesh Journal of Microbiology 25: 129–133.

    Google Scholar 

  • Siqueira, P.F., S.G. Karp, J.C. Carvalho, W. Sturm, J.A. Rodríguez-León, J. Tholozan, R.R. Singhania, A. Pandey, and C.R. Soccol. 2008. Production of bio-ethanol from soybean molasses by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. Bioresource Technology 99: 8156–8163.

    Article  PubMed  CAS  Google Scholar 

  • Sree, N.K., M. Sridhar, K. Suresh, and L.V. Rao. 1999. High alcohol production by solid substrate fermentation from starchy substrates using thermotolerant Saccharomyces cerevisiae. Bioprocess Engineering 20(6): 561–563.

    CAS  Google Scholar 

  • Swan, T.M., and K. Watson. 1999. Stress tolerance in a yeast lipid mutant: Membrane lipids influence tolerance to heat and ethanol independently of heat shock proteins and trehalose. Canadian Journal of Microbiology 45: 472–479.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D., and A.H. Rose. 1979. Inhibitory effect of ethanol on growth and solute accumulation by Saccharomyces cerevisiae as affected by plasma membrane composition. Archives of Microbiology 122: 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D., J.A. Hosack, and A.H. Rose. 1978. Plasma membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Archives of Microbiology 117: 239–245.

    Article  PubMed  CAS  Google Scholar 

  • Wheals, A.E., L.C. Barso, D.M.G. Alvis, and H.V. Amorim. 1999. Fuel ethanol after 25 years. Trends in Biotechnology 17: 482–487.

    Article  PubMed  CAS  Google Scholar 

  • Wills, C. 1990. Regulation of sugar and ethanol metabolism in Saccharomyces cerevisiae. Critical Review of Biochemistry and Molecular Biology 25(4): 245–280.

    Article  CAS  Google Scholar 

  • Yang, K.M., N.R. Lee, J.M. Woo, W. Choi, M. Zimmermann, L.M. Blank, and J.B. Park. 2012. Ethanol reduces mitochondrial membrane integrity and thereby impacts carbon metabolism of Saccharomyces cerevisiae. FEMS Yeast Research 12: 675–684.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Sangwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sangwan, S., Gupta, S., Singh, P. et al. Fuel Ethanol Production from Molasses by Indigenous Yeast Isolates. Sugar Tech 16, 422–429 (2014). https://doi.org/10.1007/s12355-013-0290-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-013-0290-1

Keywords

Navigation