Skip to main content
Log in

Plant Nematode Control

  • Review Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The cyst nematode Heterodera schachtii belongs to the most important biotic stress factors in sugar beet cultivation. Nematodes can be controlled by crop rotation, by fumigation with nematicides or by growing resistant crops. However, nematicides are no longer admitted to be used because of their toxic environmental impacts, the crop rotation system is often agronomically impracticable and the genetic resistance is so far not available in sugar beet germplasms. Thus, alternative strategies for nematode control have been applied in the past years. For instance, genetic resistance from wild beet species were identified and transferred into the elite breeding materials. Today several nematode tolerant varieties of sugar beet are commercially available. In addition, different approaches based on genetic engineering have been developed to improve plant nematode resistance. Nevertheless, an effective control of nematodes in sugar beet cultivation still remains a great challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, H.J., P.E. Urwin, and M.J. McPherson. 2003. Engineering plants for nematode resistance. Annual review of phytopathology 41: 615–639.

    Article  PubMed  CAS  Google Scholar 

  • Aylife, M.A., and E.S. Lagudah. 2004. Molecular genetics of disease resistance in cereals. Annals of Botany 94: 765–773.

    Article  Google Scholar 

  • Bakker, E., U. Achenbach, J. Bakker, J. van Vliet, J. Peleman, B. Segers, S. van der Heijden, P. van der Linde, R. Graveland, and R. Hutten. 2004. A high-resolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis. Theoretical and Applied Genetics 109: 146–152.

    Article  PubMed  CAS  Google Scholar 

  • Barton, K.A., H.R. Whiteley, and N.S. Yang. 1987. Bacillus thuringiensis 6-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to Lepidopteran insects. Plant Physiology 85: 1103–1109.

    Article  PubMed  CAS  Google Scholar 

  • Baum, T.J., A. Hiatt, W.A. Parrott, L.H. Pratt, and R.S. Hussey. 1996. Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode. Molecular Plant-Microbe Interactions 9: 382–387.

    Article  CAS  Google Scholar 

  • Bell, C.H., N. Price, and B. Chakrabart. 1996. Agrochemicals and plant protection: The methyl bromide issue. Chichester: Wiley.

    Google Scholar 

  • Bendahmane, A., G. Farnham, P. Moffett, and D.C. Baulcombe. 2002. Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. The Plant Journal 32: 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Bendahmane, A., K. Kanyuka, and D.C. Baulcombe. 1999. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11: 781–792.

    Article  PubMed  CAS  Google Scholar 

  • Böckenhoff, A., and F.M.W. Grundler. 1994. Studies on the nutrient uptake by the beet cyst nematode Heterodera schachtii by in situ microinjection of fluorescent probes into the feeding structures in Arabidopsis thaliana. Parasitology 109: 249–254.

    Article  Google Scholar 

  • Burrows, P.R., and D. De Waele. 1997. Engineering resistance against plant-parasitic nematodes using anti-nematode genes. In Cellular and molecular aspects of plant-nematode interactions, ed. C. Fenoll, F.M.W. Grundler, and S.A. Ohl, 217–236. Dordrecht: Kluwer.

    Google Scholar 

  • Cai, D., M. Kleine, S. Kifle, H.J. Harloff, N.N. Sandal, K.A. Marcker, R.M. Klein-Lankhorst, E.M.J. Salentijn, W. Lange, W.J. Stiekema, U. Wyss, F.M.W. Grundler, and C. Jung. 1997. Positional cloning of a gene for nematode resistance in sugar beet. Science 275: 832–834.

    Article  PubMed  CAS  Google Scholar 

  • Cai, D., T. Thurau, Y. Tian, T. Lange, K.W. Yeh, and C. Jung. 2003. Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Plant Molecular Biology 51: 839–849.

    Article  PubMed  CAS  Google Scholar 

  • Cai, D., T. Thurau, L.H. Weng, T. Wegelin, Y. Tian, F.M.W. Grundler, and C. Jung. 2005. An enhanced expression of Hs1 pro1 in feeding sites is required for initiation of resistance to the beet cyst nematode (Heterodera schachtii Schmidt). Biology of Molecular Plant-Microbe Interactions 4: 293–296.

    Google Scholar 

  • Chen, R.G., H.X. Li, L.I. Zhang, J.H. Zhang, J.H. Xiao, and Z.B. Ye. 2007. CaMi, a root-knot nematode resistance gene from hot pepper (Capsium annuum L.) confers nematode resistance in tomato. Plant Cell Reports 26: 895–905.

    Article  PubMed  CAS  Google Scholar 

  • Chen, R.G., L.Y. Zhang, J.H. Zhang, W. Zhang, X. Wang, B. Ouyang, H.X. Li, and Z.B. Ye. 2006. Functional characterization of Mi, a root-knot nematode resistance gene from tomato (Lycopersicon esculentum L.). Journal of Integrative Plant Biology 48: 1458–1465.

    Article  CAS  Google Scholar 

  • Davis, E.L., R.S. Hussey, and T.J. Baum. 2004. Getting to the roots of parasitism by nematodes. Trends in Parasitology 20: 134–141.

    Article  PubMed  Google Scholar 

  • Davis, E.L., R.S. Hussey, T.J. Baum, J. Bakker, A. Schots, M.N. Rosso, and P. Abad. 2000. Nematode parasitism genes. Annual review of Phytopathology 38: 365–396.

    Article  PubMed  CAS  Google Scholar 

  • de Almeida Engler, J., B. Favery, G. Engler, and P. Abad. 2005. Loss of susceptibility as an alternative for nematode resistance. Current Opinion in Biotechnology 16: 112–141.

    Article  PubMed  Google Scholar 

  • Desel, C., C. Jung, D. Cai, M. Kleine, and T. Schmidt. 2001. High-resolution mapping of YACs and the single-copy gene Hs1(pro-1) on Beta vulgaris chromosomes by multi-colour fluorescence in situ hybridization. Plant Molecular Biology 45: 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Djian-Caporalino, C., A. Fazari, M.J. Arguel, T. Vernie, C. VandeCasteele, I. Faure, G. Brunoud, L. Pijarowski, A. Palloix, V. Lefebvre, and P. Abad. 2007. Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theoretical and Applied Genetics 114: 473–486.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, K., A. Kumar, D. Kriseleit, D.U. Kloos, M.S. Phillips, and M.W. Ganal. 2002. The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. The Plant Journal 31: 127–136.

    Article  PubMed  CAS  Google Scholar 

  • Escobar, C., J. Meutter, A. de Aristizábal, S. Sanz-Alférez, F.F. del Campo, N. Barthels, W. Eycken, J. van der Seurinck, and M. van Montagu. 1999. Isolation of the LEMMI9 gene and promoter analysis during compatible plant-nematode interaction. Molecular Plant-Microbe Interactions 12: 440–449.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, V.L., C.J. Lilley, and P.E. Urwin. 2008. Nematode resistance. New Phytologist 180: 27–44.

    Article  PubMed  CAS  Google Scholar 

  • Gheysen, G., and B. Vanholme. 2007. RNAi from plants to nematodes. Trends in Biotechnology 25: 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Goddijn, O.J., K. Lindsey, F.M. van der Lee, J.C. Klap, and P.C. Sijmons. 1993. Differential gene expression in nematode-induced feeding structures of transgenic plants harbouring promoter-gusA fusion constructs. The Plant Journal 4: 863–873.

    Article  PubMed  CAS  Google Scholar 

  • Goggin, F.L., L.L. Jia, G. Shah, S. Hebert, V.M. Williamson, and D.E. Ullman. 2006. Heterologous expression of the Mi-12 gene from tomato confers resistance against nematodes but not aphids in eggplant. Molecular Plant-Microbe Interactions 19: 383–388.

    Article  PubMed  CAS  Google Scholar 

  • Golden, A.M. 1958. Interrelationships of certain Beta species and Heterodera schachtii, the sugar beet nematode. Plant Disease Reporter 42: 1157–1162.

    Google Scholar 

  • Grube, R.C., E.R. Radwanski, and M. Jahn. 2000. Comparative genetics of disease resistance within the solanaceae. Genetics 155: 873–887.

    PubMed  CAS  Google Scholar 

  • Grundler, F.M.W., and A. Böckenhoff. 1997. Physiology of nematode feeding and feeding sites. In The cellular and molecular aspects of plant-nematode interactions, ed. C. Fenoll, S. Ohl, and F.M.W. Grundler. Amsterdam: Kluwer.

    Google Scholar 

  • Grundler, F.M.W., M. Sobczak, and S. Lange. 1997. Defense responses of Arabidopsis thaliana during invasion and feeding site induction by the plant-parasitic nematode Heterodera glycines. Phys Mol Plant Pathol 50: 419–429.

    Article  Google Scholar 

  • Gurr, S.J., and J. Paul. 2005. Rushton Engineering plants with increased disease resistance: What are we going to express? Trends in Biotechnology 23: 275–282.

    Article  PubMed  CAS  Google Scholar 

  • Heller, R., J. Schondelmaier, G. Steinrücken, and C. Jung. 1996. Genetic localisation of four genes for nematode (Heterodera schachtiiSchm.) resistance in sugar beet (Beta vulgaris L.). Theoretical and Applied Genetics 92: 991–997.

    Article  CAS  Google Scholar 

  • Hijner, J.A. 1952. De gevoeligheid van wilde bieten voor het bietecysteaaltje (Heterodera schachtii). Mededelingen van het Instituut voor Rationele Suikerproductie 21: 1–13.

    Google Scholar 

  • Holtmann, B., M. Kleine, and F.M.W. Grundler. 2000. Ultrastructure and anatomy of nematode- induced syncytia in roots of susceptible and resistant sugar beet. Protoplasma 211: 39–50.

    Article  Google Scholar 

  • Huang, G.Z., R. Allen, E.L. Davis, T.J. Baum, and R.S. Hussey. 2006. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root- knot nematode parasitism gene. Proceedings of the National Academy of Sciences of the United States of America 103: 14302–14306.

    Article  PubMed  CAS  Google Scholar 

  • Hussey, R.S., F.J. Gommers, B. Henrissat, E.L. Davis, J. Helder, A. Schoots, and J. Bakker. 1998. Endogenous cellulases in animals: Isolation of β-1, 4-endonuclease genes from two species of plant-parasitic cyst nematodes. Proceedings of the National Academy of Sciences of the United States of America 95: 4906–4911.

    Article  PubMed  Google Scholar 

  • Johnson, R., J. Narvaez, G. An, and C. Ryan. 1989. Expression of proteinase inhibitors I and II in transgenic tobacco plants: Effects on natural defense against Manduca sexta larvae. Proceedings of the National Academy of Science 86: 9871–9875.

    Article  CAS  Google Scholar 

  • Jung, C., D. Cai, and M. Kleine. 1998. Engineering nematode resistance in crop species. Trends in Plant Science 3: 266–271.

    Article  Google Scholar 

  • Jung, C., and G. Wricke. 1987. Selection of diploid nematode-resistant sugar beet from monosomic addition lines. Plant Breeding 98: 205–214.

    Article  Google Scholar 

  • Karakas, M. 2008. RNA interference in plant parasitic nematodes. African J of Biotechnology 7: 2530–2534.

    CAS  Google Scholar 

  • Keller, H., N. Pamboukdjian, M. Ponchet, A. Poupet, R. Delon, J.L. Verrier, D. Roby, and P. Ricci. 1999. Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease rResistance. The Plant Cell 11: 223–235.

    Article  PubMed  CAS  Google Scholar 

  • Kleine, M., H. Voss, D. Cai, and C. Jung. 1998. Evaluation of nematode resistant sugar beet (Beta vulgaris L.) lines by molecular analysis. Theoretical and Applied Genetics 97: 896–904.

    Article  CAS  Google Scholar 

  • Knecht, K., M. Seyffarth, C. Desel, T. Thurau, I. Sherameti, B. Lou, R. Oelmüller, and D. Cai. 2010. Expression of BvGLP-1 eEncoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi. MPMI 23: 446–457.

    Article  PubMed  CAS  Google Scholar 

  • Koritsas, V.M., and H.J. Atkinson. 1994. Proteinases of females of the phytoparasite Globodera pallida (potato cyst nematode). Parasitology 109: 357–365.

    Article  CAS  Google Scholar 

  • Lange, W., J. Müller, and T.S.M. De Bock. 1993. Virulence in the beet cyst nematode (Heterodera schachtii) versus some alien genes for resistance in beet. Fund Appl Nematol 16: 447–454.

    Google Scholar 

  • Lein, J.C., K. Asbach, Y. Tian, D. Schulte, C. Li, G. Koch, C. Jung, and D. Cai. 2007. Resistance gene analogues are clustered on chromosome 3 of sugar beet and co-segregate with QTL for rhizomania resistance. Genome 50: 61–71.

    Article  PubMed  CAS  Google Scholar 

  • Li, X.Q., J.Z. Wei, A. Tan, and R.V. Aroian. 2007. Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnology Journal 5: 455–464.

    Article  PubMed  CAS  Google Scholar 

  • Lilley, C.J., M. Bakheta, W.L. Charlton, and P.E. Urwin. 2007. Recent progress in the development of RNA interference for plant parasitic nematodes. Molecular Plant Pathology 8: 701–711.

    Article  PubMed  CAS  Google Scholar 

  • Lilley, C.J., P.E. Urwin, and H.J. Atkinson. 1996. Characterization of intestinally active proteinases of cyst-nematodes. Parasitology 113: 415–424.

    Article  PubMed  CAS  Google Scholar 

  • Lilley, C.J., P.E. Urwin, H.J. Atkinson, and M.J. Mcpherson. 1997. Characterisation of cDNAs encoding serine proteinases from the soybean cyst nematode Hetrodera glycines. Molecular and Biochemical Parasitology 89: 195–207.

    Article  PubMed  CAS  Google Scholar 

  • Löptien, H. 1984. Breeding nematode-resistant beets: I. Development of resistant alien additions by crosses between Beta vulgaris L. and wild species of the section Patellares. Z Pflanzenzuecht 92: 208–220.

    Google Scholar 

  • Mariani, C., V. Gossele, M. De Beuckeleer, M. de Block, R.B. Goldberg, W. De Greef, and J. Leemans. 1992. A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357: 384–387.

    Article  CAS  Google Scholar 

  • Martinez de Ilarduya, O., A.E. Moore, and I. Kaloshian. 2004. The tomato Rme1 locus is required for Mi-1-mediated resistance to root-knot nematodes and the potato aphid. The Plant Journal 27: 417–425.

    Article  Google Scholar 

  • Martinez de Ilarduya, O., Q.G. Xie, and I. Kaloshian. 2003. Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Molecular Plant-Microbe Interactions 16: 699–708.

    Article  PubMed  CAS  Google Scholar 

  • McCarter, J.P. 2008. Molecular approaches toward resistance to plant-parasitic nematodes. In cell biology of plant nematode parasitism series: Plant cell monographs, vol. 15, ed. R.H. Berg, and C.G. Taylor. Berlin: Springer-Verlag Press.

    Google Scholar 

  • McDowell, J.M., and B.J. Woffenden. 2003. Plant disease resistance genes: Recent insights and potential applications. Trends in Biotechnology 21: 178–183.

    Article  PubMed  CAS  Google Scholar 

  • McLean, M.D., G.J. Hoover, B. Bancroft, A. Makhmoudova, S.M. Clark, T. Welacky, D.H. Simmonds, and B.J. Shelp. 2007. Identification of the full-length Hs1pro−1 coding sequence and preliminary evaluation of soybean cyst nematode resistance in soybean transformed with Hs1pro−1 cDNA. Canadian Journal of Botany 85: 437–441.

    Article  CAS  Google Scholar 

  • Meksem, K.P., V.N. Pantazopoulos, L.D. Njiti, P.R. Hyten, and D.A. Arelli. 2001. Light foot forrest resistance to the soybean cyst nematode is bigenic: Saturation mapping of the Rhg1 and Rhg4 loci. Theoretical and Applied Genetics 103: 710–717.

    Article  CAS  Google Scholar 

  • Melillo, M., P. Leonetti, M. Bongiovanni, P. Castagnone-Sereno, and Z. Bleve-Zacheo. 2006. Modulation of reactive oxygen species activities and H2O2 accumulation during compatible and incompatible tomato-root-knot nematode interactions. New Phytologist 170: 501–512.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, S.L.F., and D.P. Roberts. 2002. Combinations of biocontrol agents for management of plant-parasitic nematode and soilborne plant-pathogenic fungi. Journal of nematology 34: 1–8.

    PubMed  Google Scholar 

  • Milligan, S.B., J. Bodeau, J. Yaghoobi, I. Kaloshian, P. Zabel, and V.M. Williamson. 1998. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10: 1307–1319.

    Article  PubMed  CAS  Google Scholar 

  • Nombela, G., V.M. Williamson, and M. Muniz. 2003. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Molecular Plant-Microbe Interactions 16: 645–649.

    Article  PubMed  CAS  Google Scholar 

  • Oberschmidt, O., F.M.W. Grundler, and M. Kleine. 2003. Identification of a putative cation transporter gene from sugar beet (Beta vulgaris L.) by DDRT-PCR closely linked to the beet cyst nematode resistance gene Hs1 pro1. Plant Science 165: 777–784.

    Article  CAS  Google Scholar 

  • Ohl, S.A., F.M. van der Lee, and P.C. Sijmons. 1997. Antifeeding structure approaches to nematode resistance. In Cellular, molecular aspects of plant-nematode interactions, ed. C. Fencoll, F.M.W. Grundler, and S.A. Ohl (Hrsg.), 250–261. Dordrecht: Kluwer Academic Publishers.

  • Oppermann, C.H., C.G. Taylor, and M.A. Conkling. 1994. Root-knot nematode-directed expression of a plant root-specific gene. Science 263: 221–223.

    Article  Google Scholar 

  • Paal, J., H. Henselewski, J. Muth, K. Meksem, C.M. Menendez, F. Salamini, A. Ballvora, and C. Gebhardt. 2004. Molecular cloning of the potato Gro1–4 gene conferring resistance to pathotype Ro1 of the root nematode Globodera rostochiensis, based on a candidate gene approach. The Plant Journal 38: 285–297.

    Article  PubMed  CAS  Google Scholar 

  • Paulson, R.E., and J.M. Webster. 1972. Ultrastructure of the hypersensitive reaction in roots of tomato. Lycopersicon esculentum L., to infection by the root-knot nematode, Meloidogyne incognita. Physiology and Plant Pathology 2: 227–234.

    Article  Google Scholar 

  • Puthoff, D.P., D. Nettleton, S.R. Rodermel, and T.J. Baum. 2003. Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles. The Plant Journal 33: 911–921.

    Article  PubMed  CAS  Google Scholar 

  • Reamon-Ramos, S.M., and G. Wricke. 1992. A full set of monosomic addition lines in Beta vulgaris from Beta webbiana: Morphology and isozyme markers. Theoretical and Applied Genetics 84: 411–418.

    Article  CAS  Google Scholar 

  • Rossi, M., F.L. Goggin, S.B. Milligan, I. Kaloshian, D.E. Ullman, and V.M. Williamson. 1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proceedings of the National Academy of Sciences of the United States of America 95: 9750–9754.

    Article  PubMed  CAS  Google Scholar 

  • Rouppe van der Voort, J., K. Kanyuka, E. van der Vossen, A. Bendahmane, P. Moijman, R. Klein-Lankhorst, W. Stiekema, D. Baulcombe, and J. Bakker. 1999. Tight physical linkage of the nematode resistance gene Gpa2 and the virus resistance gene Rx on a single segment introgressed from the wild species Solanum tuberosum subsp andigena CPC 1676 into cultivated potato. Molecular Plant-Microbe Interactions 12: 197–206.

    Article  CAS  Google Scholar 

  • Ruben, E.A., J. Jamai, V.N. Afzal, K. Njiti, M.J. Triwitayakorn, S. Iqbal, R. Yaegashi, S. Bashir, P. Kazi, C.D. Arelli, H. Town, K. Ishihara, D.A. Meksem, and Lightfoot. 2006. Genomic analysis of the rhg1 locus: Candidate genes that underlie soybean resistance to the cyst nematode. Molecular Genetics and Genomics 276: 503–516.

    Article  PubMed  CAS  Google Scholar 

  • Samuelian, S., M. Kleine, C.P. Ruyter-Spira, R.M. Klein-Lankhorst, and C. Jung. 2004. Cloning and functional analyses of a gene from sugar beet up-regulated upon cyst nematode infection. Plant Molecular Biology 54: 147–156.

    Article  PubMed  CAS  Google Scholar 

  • Schacht, H. 1859. Über einige Feinde der Rübenfelder. Zeit Ver Rubenzuckerindustrie Zolluer 9: 175–179.

    Google Scholar 

  • Schmidt, A. 1871. Ueber den Rüben‐Nematoden (Heterodera schachtii A.S.). Zeitschrift des Vereines für die Rübenzuckerindustrie im Zollverein 21: 1–19.

    Google Scholar 

  • Schulte, D., D. Cai, M. Kleine, L. Fan, S. Wang, and C. Jung. 2006. A complete physical map of a wild beet (Beta procumbens) translocation in sugar beet. Molecular Genetics and Genomics 275: 504–511.

    Article  PubMed  CAS  Google Scholar 

  • Sijmons, P.C. 1993. Plant-nematode interactions. Plant Molecular Biology 23: 917–931.

    Article  PubMed  CAS  Google Scholar 

  • Sobczak, M., A. Avrova, J. Jupowicz, M.S. Phillips, K. Ernst, and A. Kumar. 2005. Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene. Molecular Plant-Microbe Interactions 18: 158–168.

    Article  PubMed  CAS  Google Scholar 

  • Steele, A.E. 1965. The host range of the sugar beet nematode. Heterodera schachtii Schmidt. Journal of American Society of Sugar Beet Technology 13: 573–603.

    Google Scholar 

  • Stuiver, M.H., and J.H.H.V. Custers. 2001. Engineering disease resistance in plants. Nature 411: 865–868.

    Article  PubMed  CAS  Google Scholar 

  • Szakasits, D., P. Heinen, K. Wieczorek, J. Hofmann, F. Wagner, D.P. Kreil, P. Sykacek, F.M. Grundler, and H. Bohlmann. 2009. The transcriptome of syncytia induced by the cyst nematode Heterodera schachtii in Arabidopsis roots. The Plant Journal 57(5): 771–784.

    Article  PubMed  CAS  Google Scholar 

  • Thurau, T., S. Kifle, C. Jung, and D. Cai. 2003. The promoter of the nematode resistance gene Hs1 pro1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana. Plant Molecular Biology 52: 643–660.

    Article  PubMed  CAS  Google Scholar 

  • Tian, Y., L.J. Fan, T. Thurau, C. Jung, and D. Cai. 2004. The absence of TIR type resistance gene analogues in the sugar beet (Beta vulgaris L.) genome. Journal of Molecular Evolution 58: 40–53.

    Article  PubMed  CAS  Google Scholar 

  • Urwin, P.E., A. Levesley, M.J. McPherson, and H.J. Atkinson. 2000. Transgenic resistance to the nematode Rotylenchulus reniformis conferred by Arabidopsis thaliana plants expressing proteinase inhibitors. Molecular Breeding 6: 257–264.

    Article  CAS  Google Scholar 

  • Urwin, P.E., C.J. Lilley, and H.J. Atkinson. 2002. Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Molecular Plant-Microbe Interactions 15: 747–752.

    Article  PubMed  CAS  Google Scholar 

  • Urwin, P.E., M.J. McPherson, and H.J. Atkinson. 1998. Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta 204: 472–479.

    Article  PubMed  CAS  Google Scholar 

  • Urwin, P.E., S.G. Moller, C.J. Lilley, M.J. McPherson, and H.J. Atkinson. 1997. Continual green-fluorescent protein monitoring of cauliflower mosaic virus 35S promoter activity in nematode-induced feeding cells in Arabidopsis thaliana. Molecular Plant-Microbe Interactions 10: 394–400.

    Article  PubMed  CAS  Google Scholar 

  • Van de Cappelle, E., E. Plovie, T. Kyndt, W. Grunewald, B. Cannoot, and G. Gheysen. 2008. AtCDKA;1 silencing in Arabidopsis thaliana reduces reproduction of sedentary plant-parasitic nematodes. Plant Biotechnology Journal 6: 749–757.

    Article  PubMed  Google Scholar 

  • van der Vossen, E.A., J.N. van der Voort, K. Kanyuka, A. Bendahmane, H. Sandbrink, D.C. Baulcombe, J. Bakker, W.J. Stiekema, and R.M. Klein-Lankhorst. 2000. Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: A virus and a nematode. The Plant Journal 23: 567–576.

    Article  PubMed  Google Scholar 

  • Vos, P., G. Simons, T. Jesse, J. Wijbrandi, L. Heinen, R. Hogers, A. Frijters, J. Groenendijk, P. Diergaarde, M. Reijans, J. Fierens-Onstenk, M. de Both, J. Peleman, T. Liharska, J. Hontelez, and M. Zabeau. 1998. The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nature Biotechnology 16: 1365–1369.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, V.M., and R.S. Hussey. 1996. Nematode pathogenesis and resistance in plants. The Plant Cell 8: 1735–1745.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, V.M., and A. Kumar. 2006. Nematode resistance in plants: The battle underground. Trends in Genetics 22: 396–403.

    Article  PubMed  CAS  Google Scholar 

  • Yu, M.H. 1984. Transmission of nematode resistance in the pedigree of homozygous resistant sugar beet. Crop Science 24: 88–91.

    Article  Google Scholar 

  • Zhang, C.L., D.C. Xu, X.C. Jiang, Y. Zhou, J. Cui, C.X. Zhang, D.F. Chen, M.R. Fowler, M.C. Elliott, N.W. Scott, A.M. Dewar, and A. Slater. 2008. Genetic approaches to sustainable pest management in sugar beet (Beta vulgaris). Annals of Applied Biology 152: 143–156.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thanks the Deutsche Forschungsgemeinschaft (grant number SFB617-A19), the Bundesministerium für Bildung und Forschung, Germany (grant number 03152 31B), and DAAD (grant number D/08/01773 and D/08/01754).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daguang Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thurau, T., Ye, W., Menkhaus, J. et al. Plant Nematode Control. Sugar Tech 12, 229–237 (2010). https://doi.org/10.1007/s12355-010-0056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-010-0056-y

Keywords

Navigation