Skip to main content

Advertisement

Log in

Evaluation of cardiac allograft vasculopathy by positron emission tomography

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Cardiac allograft vasculopathy (CAV) remains one of the most important late occurring complications in heart transplant (HT) recipients significantly effecting graft survival. Recently, there has been tremendous focus on the development of effective and safe non-invasive diagnostic strategies for the diagnosis of CAV employing a wide range of imaging technologies. During the past decade multiple studies have been published using positron emission tomography (PET) myocardial perfusion imaging, establishing the value of PET myocardial blood flow quantification for the evaluation of CAV. These independent investigations demonstrate that PET can be successfully used to establish the diagnosis of CAV, can be utilized for prognostication and may be used for serial monitoring of HT recipients. In addition, molecular imaging techniques have started to emerge as new tools to enhance our knowledge to better understand the pathophysiology of CAV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

CAV:

Cardiac allograft vasculopathy

HT:

Heart transplant

CA:

Coronary angiography

IVUS:

Intravascular ultrasound

MBF:

Myocardial blood flow

ISHLT:

International Society of Heart and Lung Transplantation

AUC:

Area under curve

MFR:

Myocardial flow reserve

Rb:

Rubidium

ACS:

Acute coronary syndrome

HF:

Heart failure

FDG:

Fluorodeoxyglucose

MMP:

Matrix metalloproteinase

DSE:

Dobutamine stress echocardiography

SPECT:

Single-photon emission tomography

CTA:

Computed tomography angiography

CMR:

Cardiac magnetic resonance

References

  1. Wang Y, Burns WR, Tang PC, Yi T, Schechner JS, Zerwes HG, et al. Interferon-gamma plays a nonredundant role in mediating T cell-dependent outward vascular remodeling of allogeneic human coronary arteries. FASEB J. 2004;18:606–8.

    Article  CAS  PubMed  Google Scholar 

  2. Briscoe DM, Schoen FJ, Rice GE, Bevilacqua MP, Ganz P, Pober JS. Induced expression of endothelial-leukocyte adhesion molecules in human cardiac allografts. Transplantation. 1991;51:537–9.

    Article  CAS  PubMed  Google Scholar 

  3. Jane-Wit D, Manes TD, Yi T, Qin L, Clark P, Kirkiles-Smith NC, et al. Alloantibody and complement promote T cell-mediated cardiac allograft vasculopathy through noncanonical nuclear factor-kappaB signaling in endothelial cells. Circulation. 2013;128:2504–16.

    Article  CAS  PubMed  Google Scholar 

  4. Russell ME, Wallace AF, Hancock WW, Sayegh MH, Adams DH, Sibinga NE, et al. Upregulation of cytokines associated with macrophage activation in the Lewis-to-F344 rat transplantation model of chronic cardiac rejection. Transplantation. 1995;59:572–8.

    Article  CAS  PubMed  Google Scholar 

  5. Jindra PT, Jin YP, Rozengurt E, Reed EF. HLA class I antibody-mediated endothelial cell proliferation via the mTOR pathway. J Immunol. 2008;180:2357–66.

    Article  CAS  PubMed  Google Scholar 

  6. Hiemann NE, Wellnhofer E, Knosalla C, Lehmkuhl HB, Stein J, Hetzer R, et al. Prognostic impact of microvasculopathy on survival after heart transplantation: evidence from 9713 endomyocardial biopsies. Circulation. 2007;116:1274–82.

    Article  PubMed  Google Scholar 

  7. Mehra MR, Canter CE, Hannan MM, Semigran MJ, Uber PA, Baran DA, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update. J Heart Lung Transplant. 2016;35:1–23.

    Article  PubMed  Google Scholar 

  8. StGoar FG, Pinto FJ, Alderman EL, Valantine HA, Schroeder JS, Gao SZ, et al. Intracoronary ultrasound in cardiac transplant recipients. In vivo evidence of “angiographically silent” intimal thickening. Circulation. 1992;85:979–87.

    Article  CAS  Google Scholar 

  9. Lee JH, Okada K, Khush K, Kobayashi Y, Sinha S, Luikart H, et al. Coronary endothelial dysfunction and the index of microcirculatory resistance as a marker of subsequent development of cardiac allograft vasculopathy. Circulation. 2017;135:1093–5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yang HM, Khush K, Luikart H, Okada K, Lim HS, Kobayashi Y, et al. Invasive assessment of coronary physiology predicts late mortality after heart transplantation. Circulation. 2016;133:1945–50.

    Article  PubMed  Google Scholar 

  11. Mehra MR, Crespo-Leiro MG, Dipchand A, Ensminger SM, Hiemann NE, Kobashigawa JA, et al. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J Heart Lung Transplant. 2010;29:717–27.

    Article  PubMed  Google Scholar 

  12. Konerman MC, Lazarus JJ, Weinberg RL, Shah RV, Ghannam M, Hummel SL, et al. Reduced myocardial flow reserve by positron emission tomography predicts cardiovascular events after cardiac transplantation. Circ Heart Fail. 2018;11:e004473.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Miller RJH, Manabe O, Tamarappoo B, Hayes S, Friedman JD, Slomka PJ, et al. Comparative prognostic and diagnostic value of myocardial blood flow and myocardial flow reserve after cardiac transplantation. J Nucl Med. 2020;61:249–55.

    Article  CAS  PubMed  Google Scholar 

  14. Chih S, Chong AY, Erthal F, deKemp RA, Davies RA, Stadnick E, et al. PET assessment of epicardial intimal disease and microvascular dysfunction in cardiac allograft vasculopathy. J Am Coll Cardiol. 2018;71:1444–56.

    Article  PubMed  Google Scholar 

  15. Bravo PE, Bergmark BA, Vita T, Taqueti VR, Gupta A, Seidelmann S, et al. Diagnostic and prognostic value of myocardial blood flow quantification as non-invasive indicator of cardiac allograft vasculopathy. Eur Heart J. 2018;39:316–23.

    Article  CAS  PubMed  Google Scholar 

  16. Kofoed KF, Czernin J, Johnson J, Kobashigawa J, Phelps ME, Laks H, et al. Effects of cardiac allograft vasculopathy on myocardial blood flow, vasodilatory capacity, and coronary vasomotion. Circulation. 1997;95:600–6.

    Article  CAS  PubMed  Google Scholar 

  17. Wu YW, Chen YH, Wang SS, Jui HY, Yen RF, Tzen KY, et al. PET assessment of myocardial perfusion reserve inversely correlates with intravascular ultrasound findings in angiographically normal cardiac transplant recipients. J Nucl Med. 2010;51:906–12.

    Article  PubMed  Google Scholar 

  18. Allen-Auerbach M, Schoder H, Johnson J, Kofoed K, Einhorn K, Phelps ME, et al. Relationship between coronary function by positron emission tomography and temporal changes in morphology by intravascular ultrasound (IVUS) in transplant recipients. J Heart Lung Transplant. 1999;18:211–9.

    Article  CAS  PubMed  Google Scholar 

  19. Feher A, Sinusas AJ. Quantitative assessment of coronary microvascular function: dynamic single-photon emission computed tomography, positron emission tomography, ultrasound, computed tomography, and magnetic resonance imaging. Circ Cardiovasc Imaging. 2017;10:e006427.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Taqueti VR, Di Carli MF. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72:2625–41.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mc Ardle BA, Davies RA, Chen L, Small GR, Ruddy TD, Dwivedi G, et al. Prognostic value of rubidium-82 positron emission tomography in patients after heart transplant. Circ Cardiovasc Imaging. 2014;7:930–7.

    Article  PubMed  Google Scholar 

  22. Feher A, Srivastava A, Quail MA, Boutagy NE, Khanna P, Wilson L, et al. Serial assessment of coronary flow reserve by rubidium-82 positron emission tomography predicts mortality in heart transplant recipients. JACC Cardiovasc Imaging. 2020;13:109–20.

    Article  PubMed  Google Scholar 

  23. Zhao XM, Delbeke D, Sandler MP, Yeoh TK, Votaw JR, Frist WH. Nitrogen-13-ammonia and PET to detect allograft coronary artery disease after heart transplantation: comparison with coronary angiography. J Nucl Med. 1995;36:982–7.

    CAS  PubMed  Google Scholar 

  24. Di Carli MF, Tobes MC, Mangner T, Levine AB, Muzik O, Chakroborty P, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med. 1997;336:1208–15.

    Article  PubMed  Google Scholar 

  25. Frist W, Yasuda T, Segall G, Khaw BA, Strauss HW, Gold H, et al. Noninvasive detection of human cardiac transplant rejection with indium-111 antimyosin (Fab) imaging. Circulation. 1987;76:V81–5.

    CAS  PubMed  Google Scholar 

  26. Kown MH, Strauss HW, Blankenberg FG, Berry GJ, Stafford-Cecil S, Tait JF, et al. In vivo imaging of acute cardiac rejection in human patients using (99 m)technetium labeled annexin V. Am J Transplant. 2001;1:270–7.

    Article  CAS  PubMed  Google Scholar 

  27. Narula J, Acio ER, Narula N, Samuels LE, Fyfe B, Wood D, et al. Annexin-V imaging for noninvasive detection of cardiac allograft rejection. Nat Med. 2001;7:1347–52.

    Article  CAS  PubMed  Google Scholar 

  28. Eisen HJ, Eisenberg SB, Saffitz JE, Bolman RM 3rd, Sobel BE, Bergmann SR. Noninvasive detection of rejection of transplanted hearts with indium-111-labeled lymphocytes. Circulation. 1987;75:868–76.

    Article  CAS  PubMed  Google Scholar 

  29. Rubin PJ, Hartman JJ, Hasapes JP, Bakke JE, Bergmann SR. Detection of cardiac transplant rejection with 111In-labeled lymphocytes and gamma scintigraphy. Circulation. 1996;94:298–303.

    Google Scholar 

  30. Pober JS, Jane-wit D, Qin L, Tellides G. Interacting mechanisms in the pathogenesis of cardiac allograft vasculopathy. Arterioscler Thromb Vasc Biol. 2014;34:1609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sasaki M, Tahara N, Abe T, Ueno T, Fukumoto Y. FDG-PET reveals coronary artery inflammation proceeding to cardiac allograft vasculopathy progression. Eur Heart J. 2016;37:2413.

    Article  PubMed  Google Scholar 

  32. Figueroa AL, Abdelbaky A, Truong QA, Corsini E, MacNabb MH, Lavender ZR, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging. 2013;6:1250–9.

    Article  Google Scholar 

  33. Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL, et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J Am Coll Cardiol. 2018;71:263–75.

    Article  CAS  PubMed  Google Scholar 

  34. Thackeray JT, Derlin T, Haghikia A, Napp LC, Wang Y, Ross TL, et al. Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc Imaging. 2015;8:1417–26.

    Article  PubMed  Google Scholar 

  35. Hsu WT, Lin CH, Jui HY, Tseng YH, Shun CT, Hsu MC, et al. CXCR4 antagonist reduced the incidence of acute rejection and controlled cardiac allograft vasculopathy in a swine heart transplant model receiving a mycophenolate-based immunosuppressive regimen. Transplantation. 2018;102:2002–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsukioka K, Suzuki J, Fujimori M, Wada Y, Yamaura K, Ito K, et al. Expression of matrix metalloproteinases in cardiac allograft vasculopathy and its attenuation by anti MMP-2 ribozyme gene transfection. Cardiovasc Res. 2002;56:472–8.

    Article  CAS  PubMed  Google Scholar 

  37. Siemionow KB, Neckrysh S. Anterior approach for complex cervical spondylotic myelopathy. Orthop Clin North Am 2012;43:41-52, viii.

  38. Toczek J, Bordenave T, Gona K, Kim HY, Beau F, Georgiadis D, et al. Novel matrix metalloproteinase 12 selective radiotracers for vascular molecular imaging. J Med Chem. 2019;62:9743–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ye Y, Toczek J, Gona K, Kim HY, Han J, Razavian M, et al. Novel arginine-containing macrocyclic MMP inhibitors: synthesis, (99 m)Tc-labeling, and evaluation. Sci Rep. 2018;8:11647.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Malm BJ, Sadeghi MM. Multi-modality molecular imaging of aortic aneurysms. J Nucl Cardiol. 2017;24:1239–45.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Boutagy NE, Feher A, Alkhalil I, Umoh N, Sinusas AJ. Molecular imaging of the heart. Compr Physiol. 2019;9:477–533.

    Article  PubMed  Google Scholar 

  42. Singh N, Van Craeyveld E, Tjwa M, Ciarka A, Emmerechts J, Droogne W, et al. Circulating apoptotic endothelial cells and apoptotic endothelial microparticles independently predict the presence of cardiac allograft vasculopathy. J Am Coll Cardiol. 2012;60:324–31.

    Article  CAS  PubMed  Google Scholar 

  43. Daly KP, Seifert ME, Chandraker A, Zurakowski D, Nohria A, Givertz MM, et al. VEGF-C, VEGF-A and related angiogenesis factors as biomarkers of allograft vasculopathy in cardiac transplant recipients. J Heart Lung Transplant. 2013;32:120–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Atkinson C, Southwood M, Pitman R, Phillpotts C, Wallwork J, Goddard M. Angiogenesis occurs within the intimal proliferation that characterizes transplant coronary artery vasculopathy. J Heart Lung Transplant. 2005;24:551–8.

    Article  PubMed  Google Scholar 

  45. Kitahara H, Okada K, Tanaka S, Yang HM, Miki K, Kobayashi Y, et al. Association of periarterial neovascularization with progression of cardiac allograft vasculopathy and long-term clinical outcomes in heart transplant recipients. J Heart Lung Transplant. 2016;35:752–9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang J, Krassilnikova S, Gharaei AA, Fassaei HR, Esmailzadeh L, Asadi A, et al. Alphavbeta3-targeted detection of arteriopathy in transplanted human coronary arteries: an autoradiographic study. FASEB J. 2005;19:1857–9.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang J, Razavian M, Tavakoli S, Nie L, Tellides G, Backer JM, et al. Molecular imaging of vascular endothelial growth factor receptors in graft arteriosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:1849–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chirakarnjanakorn S, Starling RC, Popovic ZB, Griffin BP, Desai MY. Dobutamine stress echocardiography during follow-up surveillance in heart transplant patients: diagnostic accuracy and predictors of outcomes. J Heart Lung Transplant. 2015;34:710–7.

    Article  PubMed  Google Scholar 

  49. Clerkin KJ, Farr MA, Restaino SW, Ali ZA, Mancini DM. Dobutamine stress echocardiography is inadequate to detect early cardiac allograft vasculopathy. J Heart Lung Transplant. 2016;35:1040–1.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Elkaryoni A, Abu-Sheasha G, Altibi AM, Hassan A, Ellakany K, Nanda NC. Diagnostic accuracy of dobutamine stress echocardiography in the detection of cardiac allograft vasculopathy in heart transplant recipients: a systematic review and meta-analysis study. Echocardiography. 2019;36:528–36.

    PubMed  Google Scholar 

  51. Ciliberto GR, Ruffini L, Mangiavacchi M, Parolini M, Sara R, Massa D, et al. Resting echocardiography and quantitative dipyridamole technetium-99 m sestamibi tomography in the identification of cardiac allograft vasculopathy and the prediction of long-term prognosis after heart transplantation. Eur Heart J. 2001;22:964–71.

    Article  CAS  PubMed  Google Scholar 

  52. Wells RG, Timmins R, Klein R, Lockwood J, Marvin B, deKemp RA, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med. 2014;55:1685–91.

    Article  CAS  PubMed  Google Scholar 

  53. Wells RG, Marvin B, Poirier M, Renaud J, deKemp RA, Ruddy TD. Optimization of SPECT measurement of myocardial blood flow with corrections for attenuation, motion, and blood binding compared with PET. J Nucl Med. 2017;58:2013–9.

    Article  CAS  PubMed  Google Scholar 

  54. Miller CA, Chowdhary S, Ray SG, Sarma J, Williams SG, Yonan N, et al. Role of noninvasive imaging in the diagnosis of cardiac allograft vasculopathy. Circ Cardiovasc Imaging. 2011;4:583–93.

    Article  PubMed  Google Scholar 

  55. Lee MS, Tadwalkar RV, Fearon WF, Kirtane AJ, Patel AJ, Patel CB, et al. Cardiac allograft vasculopathy: a review. Catheter Cardiovasc Interv. 2018;92:E527–36.

    Article  PubMed  Google Scholar 

  56. Wever-Pinzon O, Romero J, Kelesidis I, Wever-Pinzon J, Manrique C, Budge D, et al. Coronary computed tomography angiography for the detection of cardiac allograft vasculopathy: a meta-analysis of prospective trials. J Am Coll Cardiol. 2014;63:1992–2004.

    Article  PubMed  Google Scholar 

  57. Gregory SA, Ferencik M, Achenbach S, Yeh RW, Hoffmann U, Inglessis I, et al. Comparison of sixty-four-slice multidetector computed tomographic coronary angiography to coronary angiography with intravascular ultrasound for the detection of transplant vasculopathy. Am J Cardiol. 2006;98:877–84.

    Article  PubMed  Google Scholar 

  58. Sigurdsson G, Carrascosa P, Yamani MH, Greenberg NL, Perrone S, Lev G, et al. Detection of transplant coronary artery disease using multidetector computed tomography with adaptative multisegment reconstruction. J Am Coll Cardiol. 2006;48:772–8.

    Article  PubMed  Google Scholar 

  59. Schepis T, Achenbach S, Weyand M, Raum P, Marwan M, Pflederer T, et al. Comparison of dual source computed tomography versus intravascular ultrasound for evaluation of coronary arteries at least one year after cardiac transplantation. Am J Cardiol. 2009;104:1351–6.

    Article  PubMed  Google Scholar 

  60. Miller RJH, Kwiecinski J, Shah KS, Eisenberg E, Patel J, Kobashigawa JA, et al. Coronary computed tomography-angiography quantitative plaque analysis improves detection of early cardiac allograft vasculopathy: a pilot study. Am J Transplant. 2020;20:1375–83.

    Article  CAS  PubMed  Google Scholar 

  61. Karolyi M, Kolossvary M, Bartykowszki A, Kocsmar I, Szilveszter B, Karady J, et al. Quantitative CT assessment identifies more heart transplanted patients with progressive coronary wall thickening than standard clinical read. J Cardiovasc Comput Tomogr. 2019;13:128–33.

    Article  PubMed  Google Scholar 

  62. Erbel C, Mukhammadaminova N, Gleissner CA, Osman NF, Hofmann NP, Steuer C, et al. Myocardial perfusion reserve and strain-encoded CMR for evaluation of cardiac allograft microvasculopathy. JACC Cardiovasc Imaging. 2016;9:255–66.

    Article  PubMed  Google Scholar 

  63. Muehling OM, Wilke NM, Panse P, Jerosch-Herold M, Wilson BV, Wilson RF, et al. Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant arteriopathy assessed by magnetic resonance imaging. J Am Coll Cardiol. 2003;42:1054–60.

    Article  PubMed  Google Scholar 

  64. Miller CA, Sarma J, Naish JH, Yonan N, Williams SG, Shaw SM, et al. Multiparametric cardiovascular magnetic resonance assessment of cardiac allograft vasculopathy. J Am Coll Cardiol. 2014;63:799–808.

    Article  PubMed  Google Scholar 

  65. Steen H, Merten C, Refle S, Klingenberg R, Dengler T, Giannitsis E, et al. Prevalence of different gadolinium enhancement patterns in patients after heart transplantation. J Am Coll Cardiol. 2008;52:1160–7.

    Article  PubMed  Google Scholar 

  66. Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S, et al. The International Society of Heart and Lung Transplantation guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010;29:914–56.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Dr. Feher and Dr. Sinusas has nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Feher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 51,175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feher, A., Sinusas, A.J. Evaluation of cardiac allograft vasculopathy by positron emission tomography. J. Nucl. Cardiol. 28, 2616–2628 (2021). https://doi.org/10.1007/s12350-020-02438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-020-02438-0

Key Words

Navigation