Skip to main content
Log in

Cardiac SPECT radiomic features repeatability and reproducibility: A multi-scanner phantom study

  • ORIGINAL ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

The aim of this work was to assess the robustness of cardiac SPECT radiomic features against changes in imaging settings, including acquisition, and reconstruction parameters.

Methods

Four commercial SPECT and SPECT/CT cameras were used to acquire images of a static cardiac phantom mimicking typical myorcardial perfusion imaging using 185 MBq of 99mTc. The effects of different image acquisition and reconstruction parameters, including number of views, view matrix size, attenuation correction, as well as image reconstruction related parameters (algorithm, number of iterations, number of subsets, type of post-reconstruction filter, and its associated parameters, including filter order and cut-off frequency) were studied. In total, 5,063 transverse views were reconstructed by varying the aforementioned factors. Eighty-seven radiomic features including first-, second-, and high-order textures were extracted from these images. To assess reproducibility and repeatability, the coefficient of variation (COV), as a widely adopted metric, was measured for each of the radiomic features over the different imaging settings.

Results

The Inverse Difference Moment Normalized (IDMN) and Inverse Difference Normalized (IDN) features from the Gray Level Co-occurrence Matrix (GLCM), Run Percentage (RP) from the Gray Level Co-occurrence Matrix (GLRLM), Zone Entropy (ZE) from the Gray Level Size Zone Matrix (GLSZM), and Dependence Entropy (DE) from the Gray Level Dependence Matrix (GLDM) feature sets were the only features that exhibited high reproducibility (COV ≤ 5%) against changes in all imaging settings. In addition, Large Area Low Gray Level Emphasis (LALGLE), Small Area Low Gray Level Emphasis (SALGLE) and Low Gray Level Zone Emphasis (LGLZE) from GLSZM, and Small Dependence Low Gray Level Emphasis (SDLGLE) from GLDM feature sets turned out to be less reproducible (COV > 20%) against changes in imaging settings. The GLRLM (31.88%) and GLDM feature set (54.2%) had the highest (COV < 5%) and lowest (COV > 20%) number of the reproducible features, respectively. Matrix size had the largest impact on feature variability as most of the features were not repeatable when matrix size was modified with 82.8% of them having a COV > 20%.

Conclusion

The repeatability and reproducibility of SPECT/CT cardiac radiomic features under different imaging settings is feature-dependent. Different image acquisition and reconstruction protocols have variable effects on radiomic features. The radiomic features exhibiting low COV are potential candidates for future clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

SPECT:

Single-photon emission computed tomography

COV:

Coefficient of variation

GLCM:

Gray level co-occurrence matrix

GLRLM:

Gray level co-occurrence matrix

GLSZM:

Gray level size zone matrix

GLDM:

Gray level dependence matrix

IDMN:

Inverse difference moment normalized

LALGLE:

Large area low gray level emphasis

SALGLE:

Small area low gray level emphasis

SDLGLE:

Small dependence low gray level emphasis

References

  1. Bauer UE, Briss PA, Goodman RA, Bowman BA. Prevention of chronic disease in the 21st century: Elimination of the leading preventable causes of premature death and disability in the USA. Lancet 2014;384:45-52.

    Article  Google Scholar 

  2. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2010;56:e50-103.

    Article  Google Scholar 

  3. Slomka P, Hung GU, Germano G, Berman DS. Novel SPECT technologies and approaches in cardiac imaging. Cardiovasc Innov Appl 2016;2:31-46.

    PubMed  PubMed Central  Google Scholar 

  4. Abdollahi H, Shiri I, Salimi Y, Sarebani M, Mehdinia R, Deevband MR, et al. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose. Eur J Radiol 2016;85:2257-61.

    Article  Google Scholar 

  5. Juan Ramon A, Yang Y, Wernick MN, Pretorius PH, Johnson KL, Slomka PJ, et al. Evaluation of the effect of reducing administered activity on assessment of function in cardiac gated SPECT. J Nucl Cardiol 2019. https://doi.org/10.1007/s12350-018-01505-x.

    Article  Google Scholar 

  6. Zaidi H. Quantitative SPECT: Recent developments in detector response, attenuation and scatter correction techniques. Phys Med 1996;12:101-17.

    Google Scholar 

  7. Watson DD. Quantitative SPECT techniques. Semin Nucl Med 1999;29:192-203.

    Article  CAS  Google Scholar 

  8. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017;14:749-62.

    Article  Google Scholar 

  9. Abdollahi H, Mostafaei S, Cheraghi S, Shiri I, Rabi Mahdavi S, Kazemnejad A. Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients: A machine learning and multi-variable modelling study. Phys Med 2018;45:192-7.

    Article  Google Scholar 

  10. Al-Mallah MH. Radiomics in hypertrophic cardiomyopathy: The new tool. JACC Cardiovascular imaging 2019;12:1955-7.

    Article  Google Scholar 

  11. Kolossvary M, De Cecco CN, Feuchtner G, Maurovich-Horvat P. Advanced atherosclerosis imaging by CT: Radiomics, machine learning and deep learning. J Cardiovasc Comput Tomogr 2019;13(5):274-80.

    Article  Google Scholar 

  12. Kolossváry M, Maurovich-Horvat P. Cardiac CT radiomics. In: Schoepf UJ, editor. CT of the Heart. Totowa, NJ: Humana Press; 2019. p. 715-24.

    Chapter  Google Scholar 

  13. Reuze S, Schernberg A, Orlhac F, Sun R, Chargari C, Dercle L, et al. Radiomics in nuclear medicine applied to radiation therapy: Methods, pitfalls, and challenges. Int J Radiat Oncol Biol Phys 2018;102:1117-42.

    Article  Google Scholar 

  14. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures. They are data. Radiology 2016;278:563-77.

    Article  Google Scholar 

  15. Rahmim A, Huang P, Shenkov N, Fotouhi S, Davoodi-Bojd E, Lu L, et al. Improved prediction of outcome in Parkinson’s disease using radiomics analysis of longitudinal DAT SPECT images. Neuroimage Clin 2017;16:539-44.

    Article  Google Scholar 

  16. Shiiba T, Arimura Y, Nagano M, Takahashi T, Takaki A. Improvement of classification performance of Parkinson’s disease using shape features for machine learning on dopamine transporter single photon emission computed tomography. PLOS ONE 2020;15:e0228289.

    Article  CAS  Google Scholar 

  17. Hajianfar G, Shiri I, Maleki H, Oveisi N, Haghparast A, Abdollahi H, et al. Noninvasive O6 methylguanine-DNA methyltransferase status prediction in glioblastoma multiforme cancer using magnetic resonance imaging radiomics features: Univariate and multivariate radiogenomics analysis. World Neurosurg 2019;132:e140-61.

    Article  Google Scholar 

  18. Ashrafinia S, Dalaie P, Yan R, Ghazi P, Marcus C, Taghipour M, et al. Radiomics analysis of clinical myocardial perfusion SPECT to predict coronary artery calcification. J Nucl Med 2018;59:512.

    Google Scholar 

  19. Ashrafinia S, Dalaie P, Yan R, Huang P, Pomper M, Schindler T, et al. Application of texture and radiomics analysis to clinical myocardial perfusion SPECT imaging [Abstract]. J Nucl Med 2018;59:94.

    Google Scholar 

  20. Kolossváry M, Karády J, Szilveszter B, Kitslaar P, Hoffmann U, Merkely B, et al. Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign. Circ Cardiovasc Imaging 2017;10:e006843.

    Article  Google Scholar 

  21. Neisius U, El-Rewaidy H, Nakamori S, Rodriguez J, Manning WJ, Nezafat R. Radiomic analysis of myocardial native T1 imaging discriminates between hypertensive heart disease and hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 2019;12:1946-54.

    Article  Google Scholar 

  22. Ashrafinia S. Quantitative nuclear medicine imaging using advanced image reconstruction and radiomics. Baltimore: Johns Hopkins University; 2019.

    Google Scholar 

  23. Ashrafinia S, Dalaie P, Sadaghiani MS, Schindler T, Pomper M, Rahmim A. Standardized Radiomics of clinical myocardial perfusion stress SPECT images to determine coronary artery calcification score. Eur J Nucl Med Mol Imaging 2019;46:S17-8.

    Google Scholar 

  24. Motwani M. Hiding beyond plain sight: Textural analysis of positron emission tomography to identify high-risk plaques in carotid atherosclerosis. J Nucl Cardiol 2019. https://doi.org/10.1007/s12350-019-01981-9.

    Article  PubMed  Google Scholar 

  25. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging 2017;44:151-65.

    Article  Google Scholar 

  26. Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. arXiv preprint arXiv:161207003; 2016.

  27. Traverso A, Wee L, Dekker A, Gillies R. Repeatability and reproducibility of radiomic features: A systematic review. Int J Radiat Oncol Biol Phys 2018;102:1143-58.

    Article  Google Scholar 

  28. Kalendralis P, Traverso A, Shi Z, Zhovannik I, Monshouwer R, Starmans MPA, et al. Multicenter CT phantoms public dataset for radiomics reproducibility tests. Med Phys 2019;46:1512-8.

    Article  Google Scholar 

  29. Pfaehler E, Beukinga RJ, de Jong JR, Slart R, Slump CH, Dierckx R, et al. Repeatability of (18) F-FDG PET radiomic features: A phantom study to explore sensitivity to image reconstruction settings, noise, and delineation method. Med Phys 2019;46:665-78.

    Article  Google Scholar 

  30. Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A. The impact of image reconstruction settings on 18F-FDG PET radiomic features: Multi-scanner phantom and patient studies. Eur Radiol 2017;27:4498-509.

    Article  Google Scholar 

  31. Raunig DL, McShane LM, Pennello G, Gatsonis C, Carson PL, Voyvodic JT, et al. Quantitative imaging biomarkers: A review of statistical methods for technical performance assessment. Stat Methods Med Res 2015;24:27-67.

    Article  Google Scholar 

  32. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 2012;30:1323-41.

    Article  Google Scholar 

  33. Van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res 2017;77:e104-7.

    Article  Google Scholar 

  34. Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST, et al. Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med 2015;56:1667-73.

    Article  CAS  Google Scholar 

  35. Buvat I, Orlhac F. The dark side of radiomics: On the paramount importance of publishing negative results. J Nucl Med 2019;60:1543-4.

    Article  Google Scholar 

  36. Kolossváry M, Karády J, Kikuchi Y, Ivanov A, Schlett CL, Lu MT, et al. Radiomics versus visual and histogram-based assessment to identify atheromatous lesions at coronary CT angiography: An ex vivo study. Radiology 2019;293:89-96.

    Article  Google Scholar 

  37. Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: The St. Francis Heart Study. J Am Coll Cardiol 2005;46:158-65.

    Article  CAS  Google Scholar 

  38. Haberl R, Becker A, Leber A, Knez A, Becker C, Lang C, et al. Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: Results of 1,764 patients. J Am Coll Cardiol 2001;37:451-7.

    Article  CAS  Google Scholar 

  39. Berman DS, Wong ND, Gransar H, Miranda-Peats R, Dahlbeck J, Hayes SW, et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 2004;44:923-30.

    Article  CAS  Google Scholar 

  40. He Z-X, Hedrick TD, Pratt CM, Verani MS, Aquino V, Roberts R, et al. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation 2000;101:244-51.

    Article  CAS  Google Scholar 

  41. Abdollahi H, Shiri I, Heydari M. Medical imaging technologists in radiomics era: An alice in wonderland problem. Iran J Public Health. 2019;48:184.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation under grant SNFN 320030_176052.

Disclosure

Mohammad Edalat-Javid, Isaac Shiri, Ghasem Hajianfar, Hamid Abdollahi, Hossein Arabi, Niki Oveisi, Mohammad Javadian, Mojtaba Shamsaei Zafarghandi, Hadi Malek, Ahmad Bitarafan-Rajabi, Mehrdad Oveisi, and Habib Zaidi declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Zaidi PhD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.”

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3530 kb)

Supplementary material 2 (PPTX 973 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edalat-Javid, M., Shiri, I., Hajianfar, G. et al. Cardiac SPECT radiomic features repeatability and reproducibility: A multi-scanner phantom study. J. Nucl. Cardiol. 28, 2730–2744 (2021). https://doi.org/10.1007/s12350-020-02109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-020-02109-0

Keywords

Navigation