Skip to main content
Log in

Added value of myocardial blood flow using 18F-flurpiridaz PET to diagnose coronary artery disease: The flurpiridaz 301 trial

  • ORIGINAL ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

18F-Flurpiridaz is a promising investigational radiotracer for PET myocardial perfusion imaging with favorable properties for quantification of myocardial blood flow (MBF). We sought to validate the incremental diagnostic value of absolute MBF quantification in a large multicenter trial against quantitative coronary angiography.

Methods

We retrospectively analyzed a subset of patients (N = 231) from the first phase 3 flurpiridaz trial (NCT01347710). Dynamic PET data at rest and pharmacologic stress were fit to a previously validated 2-tissue-compartment model. Absolute MBF and myocardial flow reserve (MFR) were compared with coronary artery disease severity quantified by invasive coronary angiography on a per-patient and per-vessel basis.

Results

Stress MBF per-vessel accurately identified obstructive disease (c-index 0.79) and progressively declined with increasing stenosis severity (2.35 ± 0.71 in patients without CAD; 1.92 ± 0.49 in non-obstructed territories of CAD patients; and 1.54 ± 0.50 in diseased territories, P < 0.05). MFR similarly declined with increasing stenosis severity (3.03 ± 0.94; 2.69 ± 0.95; and 2.33 ± 0.86, respectively, P < 0.05). In multivariable logistic regression modeling, stress MBF and MFR provided incremental diagnostic value beyond patient characteristics and relative perfusion analysis.

Conclusions

Clinical myocardial blood flow measurement with 18F-flurpiridaz cardiac PET shows promise for routine application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

PET:

Positron emission tomography

MBF:

Myocardial blood flow

MFR:

Myocardial flow reserve

CAD:

Coronary artery disease

ICA:

Invasive coronary angiography

SPECT:

Single photon emission computed tomography

References

  1. Maddahi J, Czernin J, Lazewatsky J, et al. Phase I, first-in-human study of BMS-747158, a novel 18F-labeled tracer for myocardial perfusion PET: Dosimetry, biodistribution, safety, and imaging characteristics after a single injection at rest. J Nucl Med 2011;52:1490-8.

    PubMed  CAS  Google Scholar 

  2. Berman DS, Maddahi J, Tamarappoo BK, et al. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: Flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol 2013;61(4):469-77.

    PubMed  CAS  Google Scholar 

  3. Yu M, Nekolla SG, Schwaiger M, Robinson SP. The next generation of cardiac positron emission tomography imaging agents: Discovery of flurpiridaz F-18 for detection of coronary disease. Semin Nucl Med 2011;41:305-13.

    PubMed  Google Scholar 

  4. ClinicalTrials.gov. Bethesda (MD) National Library of Medicine (US) 2000 NLM identifier: NCT01347710. A Phase 3 Multi-center Study to Assess PET Imaging of Flurpiridaz F 18 Injection in Patients With CAD; 2016-Apr-5. https://clinicaltrials.gov/ct2/show/NCT01347710. Accessed 4 Jul 2019

  5. Maddahi J, Lazewatsky J, Udelson JE, et al. The first phase 3 international multicenter clinical trial of flurpiridaz F 18 PET myocardial perfusion imaging for evaluation of coronary artery disease. JACC 2020 (in press)

  6. ClinicalTrials.gov. Bethesda (MD) National Library of Medicine (US) (2000) NLM identifier: NCT03354273. An International Study to Evaluate Diagnostic Efficacy of Flurpiridaz (18F) Injection PET MPI in the Detection of Coronary Artery Disease (CAD); 2019-Mar-7. https://clinicaltrials.gov/ct2/show/NCT03354273. Accessed 4 Jul 2019.

  7. Nekolla SG, Reder S, Saraste A, et al. Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: Comparison to 13N-ammonia and validation with microspheres in a pig model. Circulation 2009;119:2333-42.

    PubMed  CAS  Google Scholar 

  8. Sherif HM, Nekolla SG, Saraste A, et al. Simplified quantification of myocardial flow reserve with flurpiridaz F 18: Validation with microspheres in a pig model. J Nucl Med 2011;52:617-24.

    PubMed  CAS  Google Scholar 

  9. Guehl NJ, Normandin MD, Wooten DW, et al. Single-scan rest/stress imaging: Validation in a porcine model with 18F-flurpiridaz. Eur J Nucl Med Mol Imaging 2017;44:1538-46.

    PubMed  Google Scholar 

  10. Packard RRS, Huang S-C, Dahlbom M, Czernin J, Maddahi J. Absolute quantitation of myocardial blood flow in human subjects with or without myocardial ischemia using dynamic flurpiridaz F 18 PET. J Nucl Med 2014;55:1438-44.

    PubMed  Google Scholar 

  11. Muzik O, Duvernoy C, Beanlands R, et al. Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented coronary artery disease by means of nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 1998;31:534-40.

    PubMed  CAS  Google Scholar 

  12. Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. J Am Coll Cardiol Imaging 2009;2:751-8.

    Google Scholar 

  13. Fiechter M, Ghadri JR, Gebhard C, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: Added value of myocardial flow reserve. J Nucl Med 2012;53:1230-4.

    PubMed  CAS  Google Scholar 

  14. Kajander S, Joutsiniemi E, Saraste M, et al. Clinical value of absolute quantification of myocardial perfusion with 15O-water in coronary artery disease. Circ Cardiovasc Imaging 2011;4:678-84.

    PubMed  Google Scholar 

  15. Danad I, Uusitalo V, Kero T, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: Cutoff values and diagnostic accuracy of quantitative [15O]H2O PET imaging. J Am Coll Cardiol 2014;64:1464-75.

    PubMed  Google Scholar 

  16. Ziadi MC, deKemp RA, Williams K, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol 2012;19:670-80.

    PubMed  Google Scholar 

  17. Naya M, Murthy VL, Taqueti VR, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med 2014;55:248-55.

    PubMed  Google Scholar 

  18. Gibbons RJ, Balady GJ, Beasley JW, et al. ACC/AHA guidelines for exercise testing. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). J Am Coll Cardiol 1997;30:260-311.

    PubMed  CAS  Google Scholar 

  19. Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: A definitive analysis of causes, consequences, and corrections. J Nucl Med 2007;48:1112-21.

    PubMed  Google Scholar 

  20. Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: The Michigan method for quantitative nuclear cardiology. J Nucl Cardiol 2007;14:455-65.

    PubMed  Google Scholar 

  21. Lee BC, Moody JB, Poitrasson-Rivière A, et al. Blood pool and tissue phase patient motion effects on 82rubidium PET myocardial blood flow quantification. J Nucl Cardiol 2018;26:1918-29.

    PubMed  PubMed Central  Google Scholar 

  22. Slomka PJ, Nishina H, Berman DS, et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol 2005;12:66-77.

    PubMed  Google Scholar 

  23. Hove JD, Iida H, Kofoed KF, Freiberg J, Holm S, Kelbaek H. Left atrial versus left ventricular input function for quantification of the myocardial blood flow with nitrogen-13 ammonia and positron emission tomography. Eur J Nucl Med Mol Imaging 2004;31:71-6.

    PubMed  Google Scholar 

  24. Lortie M, Beanlands RSB, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74.

    PubMed  Google Scholar 

  25. Huisman MC, Higuchi T, Reder S, et al. Initial characterization of an 18F-labeled myocardial perfusion tracer. J Nucl Med 2008;49:630-6.

    PubMed  Google Scholar 

  26. Robin X, Turck N, Hainard A, et al. pROC: An open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.

    PubMed  PubMed Central  Google Scholar 

  27. Youden WJ. Index for rating diagnostic tests. Cancer 1950;3:32-5.

    PubMed  CAS  Google Scholar 

  28. McNemar Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947;12:153-7.

    PubMed  CAS  Google Scholar 

  29. Leisenring W, Alonzo T, Pepe MS. Comparisons of predictive values of binary medical diagnostic tests for paired designs. Biometrics 2000;56:345-51.

    PubMed  CAS  Google Scholar 

  30. Fox J, Weisberg S. An R companion to applied regression. 3rd ed. Thousand Oaks: SAGE Publications, Inc; 2018.

    Google Scholar 

  31. Harrell FE Jr. Regression modeling strategies. 2nd ed. Cham: Springer; 2015.

    Google Scholar 

  32. Fox J, Weisberg S. Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. J Stat Softw 2018;87:1-27.

    Google Scholar 

  33. Pencina MJ, D’Agostino RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 2011;30:11-21.

    PubMed  Google Scholar 

  34. Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika 2006;93:491-507.

    Google Scholar 

  35. R Core Team (2012) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.

  36. Millman KJ, Aivazis M. Python for scientists and engineers. Comput Sci Eng 2011;13:9-12.

    Google Scholar 

  37. Gould KL, Johnson NP, Bateman TM, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol 2013;62:1639-53.

    PubMed  Google Scholar 

  38. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994;330:1782-8.

    PubMed  CAS  Google Scholar 

  39. Di Carli M, Czernin J, Hoh CK, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944-51.

    PubMed  Google Scholar 

  40. Yoshinaga K, Katoh C, Manabe O, et al. Incremental diagnostic value of regional myocardial blood flow quantification over relative perfusion imaging with generator-produced rubidium-82 PET. Circ J 2011;75:2628-34.

    PubMed  Google Scholar 

  41. Murthy VL, Bateman TM, Beanlands RS, et al. Clinical quantification of myocardial blood flow using PET: Joint position paper of the SNMMI Cardiovascular Council and the ASNC. J Nucl Cardiol 2017;59:273-93.

    Google Scholar 

  42. Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 2011;124:2215-24.

    PubMed  PubMed Central  Google Scholar 

  43. Gupta A, Taqueti VR, van de Hoef TP, et al. Integrated noninvasive physiological assessment of coronary circulatory function and impact on cardiovascular mortality in patients with stable coronary artery disease. Circulation 2017;136:2325-36.

    PubMed  PubMed Central  Google Scholar 

  44. Bom MJ, van Diemen PA, Driessen RS, et al. Prognostic value of [15O]H2O positron emission tomography-derived global and regional myocardial perfusion. Eur Heart J 2019. https://doi.org/10.1093/ehjci/jez258.

    Article  PubMed  Google Scholar 

  45. Murthy VL, Naya M, Taqueti VR, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 2014;129:2518-27.

    PubMed  PubMed Central  Google Scholar 

  46. Taqueti VR, Shaw LJ, Cook NR, et al. Excess cardiovascular risk in women relative to men referred for coronary angiography is associated with severely impaired coronary flow reserve, not obstructive disease. Circulation 2017;135:566-77.

    PubMed  Google Scholar 

  47. Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res 2001;50:151-61.

    PubMed  CAS  Google Scholar 

  48. Duvernoy CS, Meyer C, Seifert-Klauss V, et al. Gender differences in myocardial blood flow dynamics: Lipid profile and hemodynamic effects. J Am Coll Cardiol 1999;33:463-70.

    PubMed  CAS  Google Scholar 

  49. Danad I, Raijmakers P, Appelman Y, et al. Coronary risk factors and myocardial blood flow in patients evaluated for coronary artery disease: A quantitative [15O]H2O PET/CT study. Eur J Nucl Med Mol Imaging 2012;39:102-12.

    PubMed  Google Scholar 

  50. Schelbert HR. Positron emission tomography of the heart: Methodology, findings in the normal and the diseased heart, and clinical applications. In: Phelps ME, editor. PET: Molecular imaging and its biological applications. 1st ed. New York: Springer; 2004. p. 389–508.

    Google Scholar 

  51. Knaapen P. Quantitative myocardial blood flow imaging: Not all flow is equal. Eur J Nucl Med Mol Imaging 2014;41:116-8.

    PubMed  Google Scholar 

  52. Danad I, Raijmakers PG, Appelman YE, et al. Hybrid imaging using quantitative H 152 O PET and CT-based coronary angiography for the detection of coronary artery disease. J Nucl Med 2013;54:55-63.

    PubMed  CAS  Google Scholar 

  53. Nesterov S, Han C, Mäki M, et al. Myocardial perfusion quantitation with 15O-labelled water PET: High reproducibility of the new cardiac analysis software (CarimasTM). Eur J Nucl Med Mol Imaging 2009;36:1594-602.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Felicia Friend for assistance with data collection, and Francois Tranquart and Matt Morrison for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan B. Moody PhD.

Ethics declarations

Disclosure

J.B. Moody, A. Poitrasson-Rivière, and T. Hagio are employees of INVIA. R.L. Weinberg has nothing to declare. E.P. Ficaro and J.R. Corbett are stockholders of INVIA, which produces 4DM, a clinical software package for cardiac PET analysis. V.L. Murthy declares research support from INVIA. He has received research grants and speaking honoraria from Siemens Medical Imaging. He has served as an advisor to Covidien and Ionetix. He has provided expert witness testimony on behalf of Jubilant DraxImage. He owns stock General Electric and Cardinal Health and stock options in Ionetix.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

The authors have also provided an audio summary of the article, which is available to download as ESM, or to listen to via the JNC/ASNC Podcast.

All editorial decisions for this article, including selection of reviewers and the final decision, were made by guest editor Henry Gewirtz, MD, PhD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1560 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moody, J.B., Poitrasson-Rivière, A., Hagio, T. et al. Added value of myocardial blood flow using 18F-flurpiridaz PET to diagnose coronary artery disease: The flurpiridaz 301 trial. J. Nucl. Cardiol. 28, 2313–2329 (2021). https://doi.org/10.1007/s12350-020-02034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-020-02034-2

Keywords

Navigation