Skip to main content

Advertisement

Log in

Relationship between microvascular changes, autonomic denervation, and myocardial fibrosis in Chagas cardiomyopathy: Evaluation by MRI and SPECT imaging

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Background

The relationship between microvasculopathy, autonomic denervation, and myocardial fibrosis, in Chagas cardiomyopathy is incompletely understood. The aim of this study was to explore the relative extent and anatomic distribution of myocardial hypoperfusion, autonomic denervation, and myocardial scarring using Single-Photon Emission Computerized Tomography (SPECT) imaging and Magnetic Resonance Imaging (MRI).

Methods

Thirteen patients with Chagas disease all had Iodine-123-metaiodobenzylguanidine (MIBG) SPECT, 99mTc-Sestamibi (MIBI) rest-stress SPECT, and gadolinium late enhancement MRI imaging within a 2-month interval. The anatomic location and extent of denervation, of stress-induced hypoperfusion and fibrosis, were assessed through image co-registration and quantification of abnormal tissue areas as a percent of total myocardium.

Results

The results showed a strong general anatomic concordance between areas of hypoperfusion, denervation, and fibrosis, suggesting that the three abnormal features may be correlated. Myocardial denervation was anatomically and quantitatively closely associated areas of stress hypoperfusion.

Conclusion

Combined myocardial analysis of the extent and location of autonomic denervation, hypoperfusion, and scarring may allow for better understanding of the pathophysiology of Chagas cardiomyopathy. Autonomic myocardial denervation may be a more sensitive marker of cardiac involvement in Chagas Disease than finding by other imaging modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CCC:

Chronic Chagas cardiomyopathy

MIBG:

Iodine-123-metaiodobenzylguanidine

MRI:

Magnetic resonance imaging

SPECT:

Single-photon emission computed tomography

MIBI:

99mTc-Sestamibi

LVEF:

Left ventricular ejection fraction

CAD:

Coronary artery disease

ICD:

Implantable cardioverter defibrillator

MPI:

Myocardial perfusion imaging

References

  1. Control of Chagas disease: Second report of the WHO Expert Committee. World Heal Organ 2002. p. 905

  2. Rassi A, Rassi A, Marin-Neto JA. Chagas disease. Lancet 2010;375:1388-402.

    Article  Google Scholar 

  3. Muñoz-Saravia SG, Haberland A, Wallukat G, Schimke I. Chronic Chagas’ heart disease: A disease on its way to becoming a worldwide health problem: Epidemiology, etiopathology, treatment, pathogenesis and laboratory medicine. Heart Fail Rev 2012;17:45-64.

    Article  Google Scholar 

  4. Marin-Neto JA, Simões MV, Rassi Junior A. Pathogenesis of chronic Chagas cardiomyopathy: The role of coronary microvascular derangements. Rev Soc Bras Med Trop 2013;46:536-41.

    Article  Google Scholar 

  5. Marin-Neto JA, Cunha-Neto E, Maciel BC, Simões MV. Pathogenesis of chronic Chagas heart disease. Circulation 2007;115:1109-23.

    Article  Google Scholar 

  6. Simões MV, Pintya AO, Bromberg-Marin G, Sarabanda ÁV, Antloga CM, Pazin-Filho A, et al. Relation of regional sympathetic denervation and myocardial perfusion disturbance to wall motion impairment in Chagas’ cardiomyopathy. Am J Cardiol 2000;86:975-81.

    Article  Google Scholar 

  7. Miranda CH, Figueiredo AB, Maciel BC, Marin-Neto JA, Simões MV. Sustained ventricular tachycardia is associated with regional myocardial sympathetic denervation assessed with 123I-metaiodobenzylguanidine in chronic Chagas cardiomyopathy. J Nucl Med 2011;52:504-10.

    Article  CAS  Google Scholar 

  8. Higuchi MDL, Benvenuti LA, Reis MM, Metzger M. Pathophysiology of the heart in Chagas’ disease: Current status and new developments. Cardiovasc Res 2003;60:96-107.

    Article  CAS  Google Scholar 

  9. Hiss FC, Lascala TF, Maciel BC, Marin-Neto JA, Simoes MV. Changes in myocardial perfusion correlate with deterioration of left ventricular systolic function in chronic Chagas’ cardiomyopathy. JACC Cardiovasc Imaging 2009;2:164-72.

    Article  Google Scholar 

  10. Rochitte CE, Oliveira PF, Andrade JM, Ianni BM, Parga JR, Ávila LF, et al. Myocardial delayed enhancement by magnetic resonance imaging in patients with Chagas’ disease: A marker of disease severity. J Am Coll Cardiol 2005;46:1553-8.

    Article  Google Scholar 

  11. Penfield JG, Reilly RF. What nephrologists need to know about gadolinium. Nat Clin Pract Nephrol 2007;3:654-68.

    Article  Google Scholar 

  12. Geraldes CFGC, Laurent S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging 2009;4:1-23.

    Article  CAS  Google Scholar 

  13. Ibrahim T, Nekolla SG, Hörnke M, Bülow HP, Dirschinger J, Schömig A, et al. Quantitative measurement of infarct size by contrast-enhanced magnetic resonance imaging early after acute myocardial infarction: Comparison with single-photon emission tomography using Tc99m-sestamibi. J Am Coll Cardiol 2005;45:544-52.

    Article  Google Scholar 

  14. Moon JCC, Reed E, Sheppard MN, Elkington AG, Ho SY, Burke M, et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 2004;43:2260-4.

    Article  Google Scholar 

  15. Mahrholdt H, Goedecke C, Wagner A, Meinhardt G, Athanasiadis A, Vogelsberg H, et al. Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 2004;109:1250-8.

    Article  Google Scholar 

  16. McCrohon JA, Moon JCC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJS, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 2003;108:54-9.

    Article  CAS  Google Scholar 

  17. Yuan Y. Step-sizes for the gradient method. AMS/IP Stud Adv Math 2008;42:785-96.

    Google Scholar 

  18. Yoo TS. Insight into images. Wellesley: Peters AK; 2004. p. 393.

    Book  Google Scholar 

  19. Hajnal JV, Hawkes D, Hill DLG. Medical image registration (biomedical engineering). Boca Raton: CRC Press; 2001. p. 392.

    Book  Google Scholar 

  20. Snyman JA. Practical mathematical optimization. Cambridge: Springer; 2005.

    Google Scholar 

  21. Zhu C, Byrd RH, Lu P, Nocedal J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans Math Softw 1997;23:550-60.

    Article  Google Scholar 

  22. Schroeder W. The ITK Software Guide Second Edition Updated for ITK version 2. 4. FEBS Lett 2005;525:53-8.

    Google Scholar 

  23. Schroeder W, Martin K, Lorensen B. The visualization toolkit: An object-oriented approach to 3D graphics, 4th ed. Kitware, editor. Upper Saddle River: Prentice Hall; 2006

  24. Ranganath S. Contour extraction from cardiac MRI studies using snakes. Med Imaging IEEE Trans 1995;14:328-38.

    Article  CAS  Google Scholar 

  25. Caselles V, Kimmel R, Sapiro G. Geodesic active contours. Int J Comput Vis 1997;10:1467-75.

    Google Scholar 

  26. Petitjean C, Dacher JN. A review of segmentation methods in short axis cardiac MR images. Med Image Anal 2011;15:169-84.

    Article  Google Scholar 

  27. Tavakoli V, Amini AA. A survey of shaped-based registration and segmentation techniques for cardiac images. Comput Vis Image Underst 2013;117:966-89.

    Article  Google Scholar 

  28. Matsunari I, Schricke U, Bengel FM, Haase H, Barthel P, Schmidt G, et al. Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation 2000;101:2579-85.

    Article  CAS  Google Scholar 

  29. Rossi MA, Tanowitz HB, Malvestio LM, Celes MR, Campos EC, Blefari V, et al. Coronary microvascular disease in chronic Chagas cardiomyopathy including an overview on history, pathology, and other proposed pathogenic mechanisms. PLoS Negl Trop Dis 2010. https://doi.org/10.1371/journal.pntd.0002865.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Marin-Neto JA, Marzullo P, Marcassa C, Gallo L, Maciel BC, Bellina CR, et al. Myocardial perfusion abnormalities in chronic Chagas’ disease as detected by thallium-201 scintigraphy. Am J Cardiol 1992;69:780-4.

    Article  CAS  Google Scholar 

  31. Dhiman M, Coronado YA, Vallejo CK, Petersen JR, Ejilemele A, Nuñez S, et al. Innate immune responses and antioxidant/oxidant imbalance are major determinants of human Chagas disease. PLoS Negl Trop Dis. 2013;7:e2364.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of São Paulo and FAPESP for the financial support of this research project. This article was finalized under the auspices of the “Mentorship at Distance” committee of the Journal of Nuclear Cardiology®. We gratefully acknowledge the editorial suggestions by Frans J. Th. Wackers, MD, PhD.

Disclosure

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Canavaci Barizon MSc.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Funding

This study was partially funded by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) Research Grant No. 2008/04140-3.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 522 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barizon, G.C., Simões, M.V., Schmidt, A. et al. Relationship between microvascular changes, autonomic denervation, and myocardial fibrosis in Chagas cardiomyopathy: Evaluation by MRI and SPECT imaging. J. Nucl. Cardiol. 27, 434–444 (2020). https://doi.org/10.1007/s12350-018-1290-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-018-1290-z

Keywords

Navigation