Skip to main content
Log in

First assessment of simultaneous dual isotope (123I/99mTc) cardiac SPECT on two different CZT cameras: A phantom study

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

We studied the impact of simultaneous dual-isotope acquisition on 123I/99mTc mismatch assessment using two CZT cameras (DNM 530c, GE Healthcare and DSPECT, Biosensors International).

Methods

We used an anthropomorphic torso phantom (respectively filled with a solution of 123I alone, 99mTc alone, and a mixture of 123I and 99mTc) and its cardiac insert with two defects mimicking two matched and mismatched defects. Mismatch extent and reconstructed image contrast were evaluated.

Results

The acquisition mode (single vs dual) significantly impacted (i) 99mTc (but not 123I) reconstructed segmental activities using both camera (P < .001), and (ii) image contrast (using 123I and DNM 530c, P < .0001; and using both 123I and 99mTc with DSPECT, P < .0001). However, the defect and mismatch size were not impacted by the type of acquisition. With both DNM 530c and DSPECT, Lin’s concordance correlation coefficient and Bland–Altman analysis demonstrated an almost perfect concordance and agreement between single- and simultaneous dual-isotope segmental activity (123I and 99mTc).

Conclusions

This study found no impact of the acquisition mode (single vs dual) or the type of camera (DSPECT vs DNM 530c) on 123I and 99mTc defect size and mismatch, providing a new step toward simultaneous dual-isotope acquisition for combined innervation and perfusion assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

123I-mIBG:

123I-meta-iodobenzylguanidine

CCC:

Concordance correlation coefficient

CZT:

Cadmium-zinc-telluride

kCnts:

Kilo-counts

ROI:

Region of interest

VOI:

Volume of interest

References

  1. Zipes DP (1991) Sympathetic stimulation and arrhythmias. N Engl J Med 325:656-657

    Article  CAS  Google Scholar 

  2. Carrio I, Cowie MR, Yamazaki J, Udelson J, Camici PG (2010) Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging 3:92-100

    Article  Google Scholar 

  3. Morozumi T, Kusuoka H, Fukuchi K, Tani A, Uehara T, Matsuda S et al (1997) Myocardial iodine-123-metaiodobenzylguanidine images and autonomic nerve activity in normal subjects. J Nucl Med 38:49-52

    CAS  PubMed  Google Scholar 

  4. Merlet P, Benvenuti C, Moyse D, Pouillart F, Dubois-Rande JL, Duval AM et al (1999) Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy. J Nucl Med 40:917-923

    CAS  PubMed  Google Scholar 

  5. Manrique A, Bernard M, Hitzel A, Bauer F, Menard JF, Sabatier R et al (2008) Prognostic value of sympathetic innervation and cardiac asynchrony in dilated cardiomyopathy. Eur J Nucl Med Mol Imaging 35:2074-2081

    Article  Google Scholar 

  6. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA et al (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 55:2212-2221

    Article  Google Scholar 

  7. Agostini D, Marie PY, Ben-Haim S, Rouzet F, Songy B, Giordano A et al (2016) Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: A review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM). Eur J Nucl Med Mol Imaging 43:2423-2432

    Article  CAS  Google Scholar 

  8. Gimelli A, Liga R, Genovesi D, Giorgetti A, Kusch A, Marzullo P (2014) Association between left ventricular regional sympathetic denervation and mechanical dyssynchrony in phase analysis: A cardiac CZT study. Eur J Nucl Med Mol Imaging 41:946-955

    Article  Google Scholar 

  9. Gimelli A, Liga R, Giorgetti A, Genovesi D, Marzullo P (2014) Assessment of myocardial adrenergic innervation with a solid-state dedicated cardiac cadmium-zinc-telluride camera: First clinical experience. Eur Heart J Cardiovasc Imaging 15:575-585

    Article  Google Scholar 

  10. Tinti E, Positano V, Giorgetti A, Marzullo P (2014) Feasibility of [(123)I]-meta-iodobenzylguanidine dynamic 3-D kinetic analysis in vivo using a CZT ultrafast camera: Preliminary results. Eur J Nucl Med Mol Imaging 41:167-173

    Article  Google Scholar 

  11. Bellevre D, Manrique A, Legallois D, Bross S, Baavour R, Roth N et al (2015) First determination of the heart-to-mediastinum ratio using cardiac dual isotope (123I-MIBG/99mTc-tetrofosmin) CZT imaging in patients with heart failure: The ADRECARD study. Eur J Nucl Med Mol Imaging 42:1912-1919

    Article  Google Scholar 

  12. Cochet H, Bullier E, Gerbaud E, Durieux M, Godbert Y, Lederlin M et al (2013) Absolute quantification of left ventricular global and regional function at nuclear MPI using ultrafast CZT SPECT: Initial validation versus cardiac MR. J Nucl Med 54:556-563

    Article  Google Scholar 

  13. Bailliez A, Blaire T, Mouquet F, Legghe R, Etienne B, Legallois D et al (2014) Segmental and global left ventricular function assessment using gated SPECT with a semiconductor Cadmium Zinc Telluride (CZT) camera: Phantom study and clinical validation vs cardiac magnetic resonance. J Nucl Cardiol 21:712-722

    Article  Google Scholar 

  14. Bailliez A, Lairez O, Merlin C, Piriou N, Legallois D, Blaire T et al (2016) Left ventricular function assessment using 2 different cadmium-zinc-telluride cameras compared with a gamma-camera with cardiofocal collimators: Dynamic cardiac phantom study and clinical validation. J Nucl Med 57:1370-1375

    Article  CAS  Google Scholar 

  15. Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, De Bondt P et al (2015) EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging 42:1929-1940

    Article  CAS  Google Scholar 

  16. Erlandsson K, Kacperski K, van Gramberg D, Hutton BF (2009) Performance evaluation of D-SPECT: A novel SPECT system for nuclear cardiology. Phys Med Biol 54:2635-2649

    Article  Google Scholar 

  17. Leo W (1994) Techniques for nuclear and particle physics experiments, 2nd edn. Spinger, Berlin

    Book  Google Scholar 

  18. Verberne HJ, Feenstra C, de Jong WM, Somsen GA, van Eck-Smit BL, Busemann Sokole E (2005) Influence of collimator choice and simulated clinical conditions on 123I-MIBG heart/mediastinum ratios: A phantom study. Eur J Nucl Med Mol Imaging 32:1100-1107

    Article  Google Scholar 

  19. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L (2010) A fast cardiac gamma camera with dynamic SPECT capabilities: Design, system validation and future potential. Eur J Nucl Med Mol Imaging 37:1887-1902

    Article  Google Scholar 

  20. Kacperski K, Erlandsson K, Ben-Haim S, Hutton BF (2011) Iterative deconvolution of simultaneous 99mTc and 201Tl projection data measured on a CdZnTe-based cardiac SPECT scanner. Phys Med Biol 56:1397-1414

    Article  Google Scholar 

  21. Berman DS, Kang X, Gransar H, Gerlach J, Friedman JD, Hayes SW et al (2009) Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol 16:45-53

    Article  Google Scholar 

  22. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671-675

    Article  CAS  Google Scholar 

  23. Morgan CJ, Aban I (2016) Methods for evaluating the agreement between diagnostic tests. J Nucl Cardiol 23:511-513

    Article  Google Scholar 

  24. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307-310

    Article  CAS  Google Scholar 

  25. Kumita S, Cho K, Nakajo H, Toba M, Kijima T, Mizumura S et al (2000) Simultaneous assessment of Tc-99m-sestamibi and I-123-BMIPP myocardial distribution in patients with myocardial infarction: Evaluation of left ventricular function with ECG-gated myocardial SPECT. Ann Nucl Med 14:453-459

    Article  CAS  Google Scholar 

  26. Ouyang J, Zhu X, Trott CM, El Fakhri G (2009) Quantitative simultaneous 99mTc/123I cardiac SPECT using MC-JOSEM. Med Phys 36:602-611

    Article  CAS  Google Scholar 

  27. Flotats A, Carrio I, Agostini D, Le Guludec D, Marcassa C, Schafers M et al (2010) Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging 37:1802-1812

    Article  Google Scholar 

  28. Abdulghani M, Duell J, Smith M, Chen W, Bentzen SM, Asoglu R et al (2015) Global and regional myocardial innervation before and after ablation of drug-refractory ventricular tachycardia assessed with 123I-MIBG. J Nucl Med 56(Suppl 4):52S-58S

    Article  CAS  Google Scholar 

  29. Fan P, Hutton BF, Holstensson M, Ljungberg M, Hendrik Pretorius P, Prasad R et al (2015) Scatter and crosstalk corrections for (99m)Tc/(123)I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators. Med Phys 42:6895

    Article  CAS  Google Scholar 

  30. Holstensson M, Erlandsson K, Poludniowski G, Ben-Haim S, Hutton BF (2015) Model-based correction for scatter and tailing effects in simultaneous 99mTc and 123I imaging for a CdZnTe cardiac SPECT camera. Phys Med Biol 60:3045-3063

    Article  CAS  Google Scholar 

  31. D’Estanque E, Hedon C, Lattuca B, Bourdon A, Benkiran M, Verd A et al (2016) Optimization of a simultaneous dual-isotope 201Tl/123I-MIBG myocardial SPECT imaging protocol with a CZT camera for trigger zone assessment after myocardial infarction for routine clinical settings: Are delayed acquisition and scatter correction necessary? J Nucl Cardiol. doi:10.1007/s12350-016-0524-1

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Nathaniel Roth, Rafael Baavour, Sylvie Petit, Mathilde Thélu, and the nuclear medicine technicians at Caen and Lille for their technical assistance.

Disclosures

The authors have indicated that they have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanguy Blaire MD.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on http://SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 3003 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blaire, T., Bailliez, A., Ben Bouallegue, F. et al. First assessment of simultaneous dual isotope (123I/99mTc) cardiac SPECT on two different CZT cameras: A phantom study. J. Nucl. Cardiol. 25, 1692–1704 (2018). https://doi.org/10.1007/s12350-017-0841-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-017-0841-z

Keywords

Navigation