Skip to main content
Log in

Clinical value of hyperemic left ventricular systolic function in vasodilator stress testing

  • Debate Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Exercise results in increased left ventricular contractility in normal individuals. Similar changes can also be seen with vasodilator stress. This article discusses the physiologic basis of these changes as well as reviews the clinical data supporting the use of these parameters for diagnostic and prognostic evaluation. Methodologic limitations as well as other concomitant pathologic processes which may confound interpretation of stress-induced changes in LVEF are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Kassiotis C, Rajabi M, Taegtmeyer H. Metabolic reserve of the heart: the forgotten link between contraction and coronary flow. Prog Cardiovasc Dis 2008;51(1):74–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taegtmeyer H. Tracing cardiac metabolism in vivo: one substrate at a time. J Nucl Med 2010;1(51 Suppl 1):80S–7S.

    Article  Google Scholar 

  3. Dwyer EM. Left ventricular pressure-volume alterations and regional disorders of contraction during myocardial ischemia induced by atrial pacing. Circulation 1970;42(6):1111–22.

    Article  PubMed  Google Scholar 

  4. Sharma B, Goodwin JF, Raphael MJ, Steiner RE, Rainbow RG, Taylor SH. Left ventricular angiography on exercise. A new method of assessing left ventricular function in ischaemic heart disease. Br Heart J 1976;38(1):59–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Borer JS, Bacharach SL, Green MV, Kent KM, Epstein SE, Johnston GS, et al. Real-time radionuclide cineangiography in the noninvasive evaluation of global and regional left ventricular function at rest and during exercise in patients with coronary-artery disease. N Engl J Med 1977;296(15):839–44.

    Article  CAS  PubMed  Google Scholar 

  6. Jones RH, McEwan P, Newman GE, Port S, Rerych SK, Scholz PM, et al. Accuracy of diagnosis of coronary artery disease by radionuclide management of left ventricular function during rest and exercise. Circulation 1981;64(3):586–601.

    Article  CAS  PubMed  Google Scholar 

  7. Dehmer GJ, Lewis SE, Hillis LD, Corbett J, Parkey RW, Willerson JT. Exercise-induced alterations in left ventricular volumes and the pressure-volume relationship: A sensitive indicator of left ventricular dysfunction in patients with coronary artery disease. Circulation 1981;63(5):1008–18.

    Article  CAS  PubMed  Google Scholar 

  8. Corbett JR, Dehmer GJ, Lewis SE, Woodward W, Henderson E, Parkey RW, et al. The prognostic value of submaximal exercise testing with radionuclide ventriculography before hospital discharge in patients with recent myocardial infarction. Circulation 1981;64(3):535–44.

    Article  CAS  PubMed  Google Scholar 

  9. Farhad H, Murthy VL. Pharmacologic manipulation of coronary vascular physiology for the evaluation of coronary artery disease. Pharmacol Ther [Internet]. 2013. Available from: http://www.sciencedirect.com/science/article/pii/S0163725813001307

  10. Attenhofer CH, Pellikka PA, Oh JK, Roger VL, Sohn DW, Seward JB. Comparison of ischemic response during exercise and dobutamine echocardiography in patients with left main coronary artery disease. J Am Coll Cardiol 1996;27(5):1171–7.

    Article  CAS  PubMed  Google Scholar 

  11. Cates CU, Kronenberg MW, Collins HW, Sandler MP. Dipyridamole radionuclide ventriculography: A test with high specificity for severe coronary artery disease. J Am Coll Cardiol 1989;13(4):841–51.

    Article  CAS  PubMed  Google Scholar 

  12. Nussbacher A, Ariê S, Kalil R, Horta P, Feldman MD, Bellotti G, et al. Mechanism of adenosine-induced elevation of pulmonary capillary wedge pressure in humans. Circulation 1995;92(3):371–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kawel N, Santini F, Haas T, Zellweger MJ, Streefkerk HJ, Bremerich J. Normal response of cardiac flow and function to adenosine stress as assessed by cardiac MR. J Cardiovasc Med (Hagerstown). 2012;13(11):720–6.

    Article  CAS  Google Scholar 

  14. Hsiao E, Ali B, Blankstein R, Skali H, Ali T, Bruyere J, et al. Detection of obstructive coronary artery disease using regadenoson stress and 82Rb PET/CT myocardial perfusion imaging. J Nucl Med. 2013;54(10):1748–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ogilby JD, Iskandrian AS, Untereker WJ, Heo J, Nguyen TN, Mercuro J. Effect of intravenous adenosine infusion on myocardial perfusion and function. Hemodynamic/angiographic and scintigraphic study. Circulation 1992;86(3):887–95.

    Article  CAS  PubMed  Google Scholar 

  16. Iwamoto T, Bai XJ, Downey HF. Coronary perfusion related changes in myocardial contractile force and systolic ventricular stiffness. Cardiovasc Res 1994;28(9):1331–6.

    Article  CAS  PubMed  Google Scholar 

  17. Gregg DE. Effect of coronary perfusion pressure or coronary flow on oxygen usage of the myocardium. Circ Res 1963;13(6):497–500.

    Article  CAS  PubMed  Google Scholar 

  18. Dhalla AK, Wong M-Y, Wang W-Q, Biaggioni I, Belardinelli L. Tachycardia caused by A2A adenosine receptor agonists is mediated by direct sympathoexcitation in awake rats. J Pharmacol Exp Ther. 2006;316(2):695–702.

    Article  CAS  PubMed  Google Scholar 

  19. Kim C, Kwok YS, Heagerty P, Redberg R. Pharmacologic stress testing for coronary disease diagnosis: A meta-analysis. Am Heart J. 2001;142(6):934–44.

    Article  CAS  PubMed  Google Scholar 

  20. Cortigiani L, Bigi R, Landi P, Bovenzi F, Picano E, Sicari R. Prognostic implication of stress echocardiography in 6214 hypertensive and 5328 normotensive patients. Eur Heart J. 2011;32(12):1509–18.

    Article  PubMed  Google Scholar 

  21. Bodi V, Sanchis J, Lopez-Lereu MP, Nunez J, Mainar L, Monmeneu JV, et al. Prognostic and therapeutic implications of dipyridamole stress cardiovascular magnetic resonance on the basis of the ischaemic cascade. Heart. 2009;95(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  22. Hojjati MR, Muthupillai R, Wilson JM, Preventza OA, Cheong BYC. Assessment of perfusion and wall-motion abnormalities and transient ischemic dilation in regadenoson stress cardiac magnetic resonance perfusion imaging. Int J Cardiovasc Imaging. 2014;30(5):949–57.

    Article  PubMed  Google Scholar 

  23. Thomas D, Strach K, Meyer C, Naehle CP, Schaare S, Wasmann S, et al. Combined myocardial stress perfusion imaging and myocardial stress tagging for detection of coronary artery disease at 3 Tesla. J Cardiovasc Magn Reson. 2008;18(10):59.

    Article  Google Scholar 

  24. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: A 82Rb PET/CT study. J Nucl Med. 2007;48(3):349–58.

    PubMed  Google Scholar 

  25. Mut F, Giubbini R, Vitola J, Lusa L, Sobic-Saranovic D, Peix A, et al. Detection of post-exercise stunning by early gated SPECT myocardial perfusion imaging: Results from the IAEA multi-center study. J Nucl Cardiol. 2014;21(6):1168–76.

    Article  PubMed  Google Scholar 

  26. Brodov Y, Fish M, Rubeaux M, Otaki Y, Gransar H, Lemley M, et al. Quantitation of left ventricular ejection fraction reserve from early gated regadenoson stress Tc-99 m high-efficiency SPECT. J Nucl Cardiol. 2016;23(6):1251–61.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Carvalho PA, Aguiar PM, Grossman GB, Moraes JF, Baptista IS, Hirakata VN, et al. Prognostic implications of the difference between left ventricular ejection fractions after stress and at rest in addition to the quantification of myocardial perfusion abnormalities obtained with gated SPECT. Clin Nucl Med. 2012;37(8):748–54.

    Article  PubMed  Google Scholar 

  28. Dona M, Massi L, Settimo L, Bartolini M, Giannì G, Pupi A, et al. Prognostic implications of post-stress ejection fraction decrease detected by gated SPECT in the absence of stress-induced perfusion abnormalities. Eur J Nucl Med Mol Imaging. 2011;38(3):485–90.

    Article  PubMed  Google Scholar 

  29. Kato M, Matsumoto N, Nakano Y, Suzuki Y, Yoda S, Sato Y, et al. Combined assessment of myocardial perfusion and function by ECG-gated myocardial perfusion single-photon emission computed tomography for the prediction of future cardiac events in patients with type 2 diabetes mellitus. Circ J. 2011;75(2):376–82.

    Article  PubMed  Google Scholar 

  30. Gomez J, Golzar Y, Fughhi I, Olusanya A, Doukky R. The significance of post-stress decrease in left ventricular ejection fraction in patients undergoing regadenoson stress gated SPECT myocardial perfusion imaging. J Nucl Cardiol. 2017. doi:10.1007/s12350-017-0802-6.

  31. Tsoukas A, Ikonomidis I, Cokkinos P, Nihoyannopoulos P. Significance of persistent left ventricular dysfunction during recovery after dobutamine stress echocardiography. J Am Coll Cardiol 1997;30(3):621–6.

    Article  CAS  PubMed  Google Scholar 

  32. Sievers B, Jacobi L, Sommer P, Speiser U, Schoen S, Strasser RH. Influence of adenosine on ventricular function measurements as part of a comprehensive stress perfusion magnetic resonance imaging study. Acta Radiol. 2011;52(6):624–31.

    Article  PubMed  Google Scholar 

  33. Bellam N, Veledar E, Dorbala S, Di Carli MF, Shah S, Eapen D, et al. Prognostic significance of impaired chronotropic response to pharmacologic stress Rb-82 PET. J Nucl Cardiol. 2014;21(2):233–44.

    Article  PubMed  Google Scholar 

  34. Becker LC, Pepine CJ, Bonsall R, Cohen JD, Goldberg AD, Coghlan C, et al. Left ventricular, peripheral vascular, and neurohumoral responses to mental stress in normal middle-aged men and women. Reference Group for the Psychophysiological Investigations of Myocardial Ischemia (PIMI) Study. Circulation 1996;94(11):2768–77.

    Article  CAS  PubMed  Google Scholar 

  35. Port S, Cobb FR, Coleman RE, Jones RH. Effect of age on the response of the left ventricular ejection fraction to exercise. N Engl J Med 1980;303(20):1133–7.

    Article  CAS  PubMed  Google Scholar 

  36. Tamás E, Broqvist M, Olsson E, Franzén S, Nylander E. Exercise radionuclide ventriculography for predicting post-operative left ventricular function in chronic aortic regurgitation. JACC Cardiovasc Imaging 2009;2(1):48–55.

    Article  PubMed  Google Scholar 

Download references

Disclosures

Dr. Murthy has received speaker fees from Bracco Diagnostics and Ionetix and also received monetary and non-monetary research support from INVIA Medical Imaging Solutions. Dr. Dorbala has received research Grant from Astellas Global Pharma Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesh L. Murthy MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murthy, V.L., Dorbala, S. Clinical value of hyperemic left ventricular systolic function in vasodilator stress testing. J. Nucl. Cardiol. 24, 1002–1006 (2017). https://doi.org/10.1007/s12350-017-0836-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-017-0836-9

Keywords

Navigation