Skip to main content
Log in

Heart failure patients with prediabetes and newly diagnosed diabetes display abnormalities in myocardial metabolism

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

In type 2 diabetes, a decrease in myocardial glucose uptake (MGU) may lower glucose oxidation and contribute to progression of chronic heart failure (CHF). However, it is unsettled whether CHF patients with prediabetes have abnormal MGU and myocardial blood flow (MBF) during normal physiological conditions.

Methods and results

We studied 35 patients with CHF and reduced left ventricular ejections fraction (34 ± 9%) without overt T2D (mean HbA1c: 40 ± 4 mmol/mol) using echocardiography and quantitative measurements of MGU by 18F-FDG-PET and perfusion by 15O-H2O-PET. An oral glucose tolerance test (OGTT) was performed during the FDG-PET, which identified 17 patients with abnormal and 18 patients with normal glucometabolic response. Global MGU was higher in patients with normal OGTT response (0.31 ± 0.09 µmol/g/min) compared with patients with abnormal OGTT response (0.25 ± 0.09 µmol/g/min) (P = 0.05). MBF (P = 0.22) and myocardial flow reserve (MFR) (P = 0.83) were similar in the study groups. The reduced MGU in prediabetic patients was attributable to reduced MGU in viable myocardium with normal MFR (P < 0.001).

Conclusion

CHF patients with prediabetes have reduced MGU in segments with preserved MFR as compared to CHF patients with normal glucose tolerance. Whether reversal of these myocardial abnormalities can improve outcome needs to be investigated in large-scale studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

CHF:

Chronic heart failure

HEC:

Hyperinsulinaemic-euglycaemic clamp

HFrEF:

Heart failure with reduced ejection fraction

LVEF:

Left ventricular ejection fraction

MGU:

Myocardial glucose uptake

MBF:

Myocardial blood flow

MFR:

Myocardial flow reserve

OGTT:

Oral glucose tolerance test

PTI:

Perfusable tissue index

WMS:

Wall motion score

References

  1. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ 2000;321:405-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pocock SJ, Wang D, Pfeffer MA, Yusuf S, McMurray JJV, Swedberg KB, et al. Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J 2005;27:65-75.

    Article  PubMed  Google Scholar 

  3. Andersson C, Weeke P, Pecini R, Kjaergaard J, Hassager C, Køber L, et al. Long-term impact of diabetes in patients hospitalized with ischemic and non-ischemic heart failure. Scand Cardiovasc J 2010;44:37-44.

    Article  PubMed  Google Scholar 

  4. Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation. 2007;116:434-48.

    Article  CAS  PubMed  Google Scholar 

  5. Egstrup M, Schou M, Gustafsson I, Kistorp CN, Hildebrandt PR, Tuxen CD. Oral glucose tolerance testing in an outpatient heart failure clinic reveals a high proportion of undiagnosed diabetic patients with an adverse prognosis. Eur J Heart Fail 2011;13:319-26.

    Article  PubMed  Google Scholar 

  6. Dutka DP, Pitt M, Pagano D, Mongillo M, Gathercole D, Bonser RS, et al. Myocardial glucose transport and utilization in patients with type 2 diabetes mellitus, left ventricular dysfunction, and coronary artery disease. J Am Coll Cardiol 2006;48:2225-31.

    Article  CAS  PubMed  Google Scholar 

  7. Borai A, Livingstone C, Kaddam I, Ferns G. Selection of the appropriate method for the assessment of insulin resistance. BMC Med Res Methodol 2011;11:158.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vitale GD, deKemp RA, Ruddy TD, Williams K, Beanlands RSB. Myocardial glucose utilization and optimization of 18F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. J Nucl Med 2001;42:1730-6.

    CAS  PubMed  Google Scholar 

  9. Fallavollita J, Luisi A, Yun E, deKemp R, Canty J. An abbreviated hyperinsulinemic-euglycemic clamp results in similar myocardial glucose utilization in both diabetic and non-diabetic patients with ischemic cardiomyopathy. J Nucl Cardiol 2010;17:637-45.

    Article  PubMed  Google Scholar 

  10. Jorsal A, Wiggers H, Holmager P, Nilsson B, Nielsen R, Boesgaard TW, et al. A protocol for a randomised, double-blind, placebo-controlled study of the effect of liraglutide on left ventricular function in chronic heart failure patients with and without type 2 diabetes (The LIVE Study). BMJ Open 2014;4:e004885.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Avignon A, Boegner C, Mariano-Goulart D, Colette C, Monnier L. Assessment of insulin sensitivity from plasma insulin and glucose in the fasting or post oral glucose-load state. Int J Obes Relat Metab Disord 1999;23:512-7.

    Article  CAS  PubMed  Google Scholar 

  12. Wiggers H, Bøttcher M, Nielsen TT, Gjedde A, Bøtker HE. Measurement of myocardial glucose uptake in patients with ischemic cardiomyopathy: Application of a new quantitative method using regional tracer kinetic information. J Nucl Med 1999;40:1292-300.

    CAS  PubMed  Google Scholar 

  13. Harms H, Knaapen P, de Haan S, Halbmeijer R, Lammertsma A, Lubberink M. Automatic generation of absolute myocardial blood flow images using [15O]H2O and a clinical PET/CT scanner. Eur J Nucl Med Mol Imaging 2011;38:930-9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Baer FM, Voth E, Deutsch HJ, Schneider CA, Horst M, de Vivie ER, et al. Predictive value of low dose dobutamine transesophageal echocardiography and fluorine-18 fluorodeoxyglucose positron emission tomography for recovery of regional left ventricular function after successful revascularization. J Am Coll Cardiol 1996;28:60-9.

    Article  CAS  PubMed  Google Scholar 

  15. Rischpler C, Langwieser N, Souvatzoglou M, Batrice A, van Marwick S, Snajberk J, et al. PET/MRI early after myocardial infarction: Evaluation of viability with late gadolinium enhancement transmurality vs 18F-FDG uptake. Eur Heart J Cardiovasc Imaging 2015. doi:10.1093/ehjci/jeu317.

    Google Scholar 

  16. Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers PG, Lammertsma AA, et al. Quantitative assessment of myocardial-áperfusion in the detection of significant coronary artery disease: Cutoff values and diagnostic accuracy of quantitative [15O]H2O PET imaging. J Am Coll Cardiol 2014;64:1464-75.

    Article  PubMed  Google Scholar 

  17. Knaapen P, Boellaard R, Götte MJW, Dijkmans PA, van Campen LMC, de Cock CC, et al. Perfusable tissue index as a potential marker of fibrosis in patients with idiopathic dilated cardiomyopathy. J Nucl Med 2004;458):1299-304.

    PubMed  Google Scholar 

  18. Marinho NVS, Keogh BE, Costa DC, Lammerstma AA, Ell PJ, Camici PG. Pathophysiology of chronic left ventricular dysfunction: New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation 1996;93:737-44.

    Article  CAS  PubMed  Google Scholar 

  19. Sondergaard HM, Bottcher M, Marie Madsen M, Schmitz O, Hansen SB, Nielsen TT, et al. Impact of type 2 diabetes on myocardial insulin sensitivity to glucose uptake and perfusion in patients with coronary artery disease. J Clin Endocrinol Metab 2006;91:4854-61.

    Article  PubMed  Google Scholar 

  20. Bøtker HE, Bøttcher M, Schmitz O, Gee A, Hansen SB, Cold GE, et al. Glucose uptake and lumped constant variability in normal human hearts determined with [18F]fluorodeoxyglucose. J Nucl Cardiol 1997;4:125-32.

    Article  PubMed  Google Scholar 

  21. Utriainen T, Takala T, Luotolahti M, Rönnemaa T, Laine H, Ruotsalainen U, et al. Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM. Diabetologia 1998;41:555-9.

    Article  CAS  PubMed  Google Scholar 

  22. Kofoed K, Carstensen S, Hove J, Freiberg J, Bangsgaard R, Holm S, et al. Low whole-body insulin sensitivity in patients with ischaemic heart disease is associated with impaired myocardial glucose uptake predictive of poor outcome after revascularisation. Eur J Nucl Med. 2002;29:991-8.

    Article  CAS  Google Scholar 

  23. Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010;90:207-58.

    Article  CAS  PubMed  Google Scholar 

  24. Juhani Knuuti M, Mäki M, Yki-Järvinen H, Voipio-Pulkki LM, Härkönen R, Haaparanta M, et al. The effect of insulin and FFA on myocardial glucose uptake. J Mol Cell Cardiol 1995;27:1359-67.

    Article  Google Scholar 

  25. Nielsen R, Norrelund H, Kampmann U, Kim WY, Ringgaard S, Schar M, et al. Failing heart of patients with type 2 diabetes mellitus can adapt to extreme short-term increases in circulating lipids and does not display features of acute myocardial lipotoxicity. Circ Heart Fail 2013;6:845-52.

    Article  CAS  PubMed  Google Scholar 

  26. Opie LH, Knuuti J. The adrenergic-fatty acid load in heart failure. J Am Coll Cardiol 2009;54:1637-46.

    Article  CAS  PubMed  Google Scholar 

  27. Depre C, Vanoverschelde JL, Taegtmeyer H. Glucose for the heart. Circulation 1999;99:578-88.

    Article  CAS  PubMed  Google Scholar 

  28. Lopaschuk GD, Stanley WC. Glucose metabolism in the ischemic heart. Circulation 1997;95:313-5.

    Article  CAS  PubMed  Google Scholar 

  29. Russell RR, Bergeron R, Shulman GI, Young LH. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol Heart Circ Physiol 1999;277:H643-9.

    Article  CAS  Google Scholar 

  30. Sun D, Nguyen N, DeGrado TR, Schwaiger M, Brosius FC. Ischemia induces translocation of the insulin-responsive glucose transporter GLUT4 to the plasma membrane of cardiac myocytes. Circulation 1994;89:793-8.

    Article  CAS  PubMed  Google Scholar 

  31. American Diabetes Association. 2. Classification and Diagnosis of Diabetes. Diabetes Care 2016;39:S13-22.

    Article  Google Scholar 

  32. Southworth R. Hexokinase-mitochondrial interaction in cardiac tissue: Implications for cardiac glucose uptake, the 18FDG lumped constant and cardiac protection. J Bioenerg Biomembr 2009;41:187-93.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

Roni Nielsen, Anders Jorsal, Peter Iversen, Lars Tolbod, PhD, Kirsten Bouchelouche, Jens Sørensen, Hendrik Johannes Harms, Allan Flyvbjerg, Hans Erik Bøtker, and Henrik Wiggers have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roni Nielsen MD, PhD.

Additional information

Funding

The present study was funded by an unrestricted grant from Novo Nordisk A/S to finance the LIVE study.

See related editorial, doi: 10.1007/s12350-016-0586-0.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for reuse at meetings and presentations. Search for the article DOI on SpringerLink.com

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, R., Jorsal, A., Iversen, P. et al. Heart failure patients with prediabetes and newly diagnosed diabetes display abnormalities in myocardial metabolism. J. Nucl. Cardiol. 25, 169–176 (2018). https://doi.org/10.1007/s12350-016-0622-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-016-0622-0

Keywords

Navigation