Skip to main content
Log in

Comparative analysis of iterative reconstruction algorithms with resolution recovery and time of flight modeling for 18F-FDG cardiac PET: A multi-center phantom study

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

An Erratum to this article was published on 25 January 2016

Abstract

Background

The purpose of this study was to evaluate the image quality in cardiac 18F-FDG PET using the time of flight (TOF) and/or point spread function (PSF) modeling in the iterative reconstruction (IR).

Methods

Three scanners and an anthropomorphic cardiac phantom with an insert simulating a transmural defect (TD) were used. Two sets of scans (with/without TD) were acquired, and four reconstruction schemes were considered: (1) IR; (2) IR + PSF, (3) IR + TOF, and (4) IR + TOF + PSF. LV wall thickness (FWHM), contrast between LV wall and inner chamber (C IC), and TD contrast in LV wall (C TD) were evaluated.

Results

Tests of the reconstruction protocols showed a decrease in FWHM from IR (13 mm) to IR + PSF (11 mm); an increase in the C IC from IR (65%) to IR + PSF (71%) and from IR + TOF (72%) to IR + TOF + PSF (77%); and an increase in the C TD from IR + PSF (72%) to IR + TOF (75%) and to IR + TOF + PSF (77%). Tests of the scanner/software combinations showed a decrease in FWHM from Gemini_TF (13 mm) to Biograph_mCT (12 mm) and to Discovery_690 (11 mm); an increase in the C IC from Gemini_TF (65%) to Biograph_mCT (73%) and to Discovery_690 (75%); and an increase in the C TD from Gemini_TF/Biograph_mCT (72%) to Discovery_690 (77%).

Conclusion

The introduction of TOF and PSF increases image quality in cardiac 18F-FDG PET. The scanner/software combinations exhibit different performances, which should be taken into consideration when making cross comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

IR:

Iterative reconstruction

TOF:

Time of flight

RM:

Resolution modeling

PSF:

Point spread function

TD:

Transmural defect

FWHM:

Full width at half maximum

LV:

Left ventricle

ROI:

Region of interest

C IC :

Percent contrast between LV wall and inner cavity

C TD :

Percent TD contrast in LV wall

References

  1. Conti M. Focus on time-of-flight PET: The benefits of improved time resolution. Eur J Nucl Med Mol Imaging 2011;38:1147-57.

    Article  PubMed  Google Scholar 

  2. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 2012;57:R119-59.

    Article  PubMed  Google Scholar 

  3. Leahy RM, Qi JY. Statistical approaches in quantitative positron emission tomography. Stat Comput 2000;10:147-65.

    Article  Google Scholar 

  4. Lecomte R, Schmitt D, Lamoureux G. Geometry study of a high resolution PET detection system using small detectors. IEEE Trans Nucl Sci 1984;31:556-61.

    Article  Google Scholar 

  5. Alessio AM, Kinahan PE, Lewellen TK. Modeling and incorporation of system response functions in 3-D whole body PET. IEEE Trans Med Imaging 2006;25:828-37.

    Article  PubMed  Google Scholar 

  6. Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006;25:907-21.

    Article  PubMed  Google Scholar 

  7. Knäusl B, Rausch IF, Bergmann H, Dudczak R, Hirtl A, Georg D. Influence of PET reconstruction parameters on the TrueX algorithm. Nuklearmedizin 2013;52:28-35.

    Article  PubMed  Google Scholar 

  8. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007;48:471-80.

    PubMed  Google Scholar 

  9. Gemini TF. Key to success, Philips Medical Systems. Cleveland: Koninklijke Philips Electronics N.V.; 2007.

    Google Scholar 

  10. Zoccarato O, Scabbio C, De Ponti E, Matheoud R, Leva L, Morzenti S, et al. Comparative analysis of iterative reconstruction algorithms with resolution recovery for cardiac SPECT studies. A multi-center phantom study. J Nucl Cardiol 2014;21:135-48.

    Article  PubMed  Google Scholar 

  11. Rasband WS. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2012. Accessed 14 August 2013.

  12. Surti S, Scheuermann J, El Fakhri G, Daube-Witherspoon ME, Lim R, Lim R, Abi-Hatem N, et al. Impact of time-of-flight PET on whole-body oncologic studies: A human observer lesion detection and localization study. J Nucl Med 2011;52:712-9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. El Fakhri G, Surti S, Trott CM, Scheuermann J, Karp JS. Improvement in lesion detection with whole-body oncologic time-of-flight PET. J Nucl Med 2011;52:347-53.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lois C, Jakoby BW, Long MJ, Hubner KF, Barker DW, Casey ME, et al. An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging. J Nucl Med 2010;51:237-45.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kadrmas DJ, Casey ME, Conti M, Jakoby BW, Lois C, Townsend DW. Impact of time-of-flight on PET tumor detection. J Nucl Med 2009;50:1315-23.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schaefferkoetter J, Ouyang J, Rakvongthai Y, Nappi C, El Fakhri G. Effect of time-of-flight and point spread function modeling on detectability of myocardial defects in PET. Med Phys 2014;41:062502.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mananga ES, El Fakhri G, Schaefferkoetter J, Bonab AA, Ouyang J. Myocardial defect detection using PET-CT: phantom studies. PLoS One 2014;9:e88200.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Petibon Y, Ouyang J, Zhu X, Huang C, Reese TG, Chun SY, et al. Cardiac motion compensation and resolution modeling in simultaneous PET-MR: A cardiac lesion detection study. Phys Med Biol 2013;58:2085-102.

    Article  CAS  PubMed  Google Scholar 

  19. Le Meunier L, Slomka PJ, Dey D, Ramesh A, Thomson LE, Hayes SW, et al. Enhanced definition PET for cardiac imaging. J Nucl Cardiol 2010;17:414-46.

    Article  PubMed  Google Scholar 

  20. Le Meunier L, Slomka PJ, Dey D, Ramesh A, Thomson LE, Hayes SW, et al. Motion frozen (18)F-FDG cardiac PET. J Nucl Cardiol 2011;18:259-66.

    Article  PubMed  Google Scholar 

  21. Rahmim A, Tang J. Noise propagation in resolution modeled PET imaging and its impact on detectability. Phys Med Biol 2013;58:6945-68.

    Article  PubMed  Google Scholar 

  22. Sunderland JJ, Christian PE. Quantitative PET/CT scanner performance characterization based upon the society of nuclear medicine and molecular imaging clinical trials network oncology clinical simulator phantom. J Nucl Med 2015;56:145-52.

    Article  PubMed  Google Scholar 

  23. Bettinardi V, Presotto L, Rapisarda E, Picchio M, Gianolli L, Gilardi MC. Physical performance of the new hybrid PET/CT Discovery 690. Med Phys 2011;38:5394-411.

    Article  CAS  PubMed  Google Scholar 

  24. Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, et al. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. J Nucl Med 2012;53:1716-22.

    Article  PubMed  Google Scholar 

  25. Lamare F, Le Maitre A, Dawood M, Schäfers KP, Fernandez P, Rimoldi OE, et al. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging. Med Phys 2014;41:072504.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

None.

Financial Support

None.

Author Contributions

Study concept and design: O Zoccarato, M Lecchi, M Brambilla, R Matheoud, C Marcassa, L Leva, A Del Sole. Data acquisition: O Zoccarato, D Lizio, R Matheoud, C Rodella, C. Bracco, L Indovina. Analysis and interpretation of data: O Zoccarato, C Sabbio, L Leva, C Marcassa, M Lecchi, M Brambilla, A Del Sole. Drafting of the manuscript: M Brambilla, O Zoccarato, C Marcassa, D Lizio, R Matheoud, C Scabbio. Clinical revision of the manuscript for important intellectual content: L Leva, C Marcassa, A Del Sole, M Lecchi, A Savi, L Indovina. Final approval of the manuscript submitted: all authors.

Disclosure

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Brambilla PhD.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12350-016-0415-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matheoud, R., Lecchi, M., Lizio, D. et al. Comparative analysis of iterative reconstruction algorithms with resolution recovery and time of flight modeling for 18F-FDG cardiac PET: A multi-center phantom study. J. Nucl. Cardiol. 24, 1036–1045 (2017). https://doi.org/10.1007/s12350-015-0385-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-015-0385-z

Keywords

Navigation