Skip to main content
Log in

Evaluation of ECG-gated [11C]acetate PET for measuring left ventricular volumes, mass, and myocardial external efficiency

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

An Erratum to this article was published on 11 May 2016

Abstract

Background

Noninvasive estimation of myocardial external efficiency (MEE) requires measurements of left ventricular (LV) oxygen consumption with [11C]acetate PET in addition to LV stroke volume and mass with cardiovascular magnetic resonance (CMR). Measuring LV geometry directly from ECG-gated [11C]acetate PET might enable MEE evaluation from a single PET scan. Therefore, we sought to establish the accuracy of measuring LV volumes, mass, and MEE directly from ECG-gated [11C]acetate PET.

Methods

Thirty-five subjects with aortic valve stenosis underwent ECG-gated [11C]acetate PET and CMR. List mode PET data were rebinned into 16-bin ECG-gated uptake images before measuring LV volumes and mass using commercial software and compared to CMR. Dynamic datasets were used for calculation of mean LV oxygen consumption and MEE.

Results

LV mass, volumes, and ejection fraction measured by CMR and PET correlated strongly (r = 0.86-0.92, P < .001 for all), but were underestimated by PET (P < .001 for all except ESV P = .79). PET-based MEE, corrected for bias, correlated fairly with PET/CMR-based MEE (r = 0.60, P < .001, bias −3 ± 21%, P = .56). PET-based MEE bias was strongly associated with LV wall thickness.

Conclusions

Although analysis-related improvements in accuracy are recommended, LV geometry estimated from ECG-gated [11C]acetate PET correlate excellently with CMR and can indeed be used to evaluate MEE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

MEE:

Myocardial external efficiency

CMR:

Cardiovascular magnetic resonance

MVO2 :

Myocardial oxygen consumption

LV MVO2 :

Left ventricle total oxygen consumption

ECTb:

Emory cardiac toolbox

ΔAVmean :

Mean transaortic valve gradient

MEECMR :

MEE calculated using both PET and CMR data

MEEPET :

MEE calculated using PET data only

cMEEPET :

MEE calculated from PET data only using SV and mass corrected according to the derived linear regression equation for PET and CMR values

WMI:

Work metabolic index

References

  1. Evans CL, Matsuoka Y. The effect of various mechanical conditions on the gaseous metabolism and efficiency of the mammalian heart. J Physiol 1915;49:378-405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bing R, Hammond M, Handelsman J, Powers S, Spencer F, Eckenhoff J, et al. The measurement of coronary blood flow, oxygen consumption, and efficiency of the left ventricle in man. Am Heart J 1949;38:1.

    Article  CAS  PubMed  Google Scholar 

  3. Braunwald E. Control of myocardial oxygen consumption: Physiologic and clinical considerations. Am J Cardiol 1971;27:416-32.

    Article  CAS  PubMed  Google Scholar 

  4. Huss JM, Kelly DP. Mitochondrial energy metabolism in heart failure: A question of balance. J Clin Invest 2005;115:547-55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown MA, Myears DW, Bergmann SR. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med 1989;30:187-93.

    CAS  PubMed  Google Scholar 

  6. Klein LJ, Visser FC, Knaapen P, Peters JH, Teule GJ, Visser CA, et al. Carbon-11 acetate as a tracer of myocardial oxygen consumption. Eur J Nucl Med 2001;28:651-68.

    Article  CAS  PubMed  Google Scholar 

  7. Hata T, Nohara R, Fujita M, Hosokawa R, Lee L, Kudo T, et al. Noninvasive assessment of myocardial viability by positron emission tomography with 11C acetate in patients with old myocardial infarction usefulness of low-dose dobutamine infusion. Circulation 1996;94:1834-41.

    Article  CAS  PubMed  Google Scholar 

  8. van den Hoff J, Burchert W, Borner AR, Fricke H, Kuhnel G, Meyer GJ, et al. [1-(11)C]acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med 2001;42:1174-82.

    PubMed  Google Scholar 

  9. Gropler RJ, Geltman EM, Sampathkumaran K, Perez JE, Moerlein SM, Sobel BE, et al. Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism. J Am Coll Cardiol 1992;20:569-77.

    Article  CAS  PubMed  Google Scholar 

  10. Sciacca RR, Akinboboye O, Chou RL, Epstein S, Bergmann SR. Measurement of myocardial blood flow with PET using 1-11C-acetate. J Nucl Med 2001;42:63-70.

    CAS  PubMed  Google Scholar 

  11. Timmer SA, Germans T, Gotte MJ, Russel IK, Dijkmans PA, Lubberink M, et al. Determinants of myocardial energetics and efficiency in symptomatic hypertrophic cardiomyopathy. Eur J Nucl Med Mol Imaging 2010;37:779-88.

    Article  PubMed  Google Scholar 

  12. Kim IS, Izawa H, Sobue T, Ishihara H, Somura F, Nishizawa T, et al. Prognostic value of mechanical efficiency in ambulatory patients with idiopathic dilated cardiomyopathy in sinus rhythm. J Am Coll Cardiol 2002;39:1264-8.

    Article  PubMed  Google Scholar 

  13. Knaapen P, Germans T, Knuuti J, Paulus WJ, Dijkmans PA, Allaart CP, et al. Myocardial energetics and efficiency: Current status of the noninvasive approach. Circulation 2007;115:918-27.

    Article  PubMed  Google Scholar 

  14. Heiberg E, Sjogren J, Ugander M, Carlsson M, Engblom H, Arheden H. Design and validation of segment-freely available software for cardiovascular image analysis. BMC Med Imaging 2010;10:1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Faber TL, Cooke CD, Folks RD, Vansant JP, Nichols KJ, DePuey EG, et al. Left ventricular function and perfusion from gated SPECT perfusion images: An integrated method. J Nucl Med 1999;40:650-9.

    CAS  PubMed  Google Scholar 

  16. Harms HJ, Knaapen P, de Haan S, Halbmeijer R, Lammertsma AA, Lubberink M. Automatic generation of absolute myocardial blood flow images using [15O]H2O and a clinical PET/CT scanner. Eur J Nucl Med Mol Imaging 2011;38:930-9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sun KT, Yeatman LA, Buxton DB, Chen K, Johnson JA, Huang SC, et al. Simultaneous measurement of myocardial oxygen consumption and blood flow using [1-carbon-11]acetate. J Nucl Med 1998;39:272-80.

    CAS  PubMed  Google Scholar 

  18. Knaapen P, Germans T. Myocardial efficiency in heart failure: Non invasive imaging. Heart Metab 2008;39:14.

    Google Scholar 

  19. Currie PJ, Seward JB, Reeder GS, Vlietstra RE, Bresnahan DR, Bresnahan JF, et al. Continuous-wave doppler echocardiographic assessment of severity of calcific aortic stenosis: A simultaneous doppler-catheter correlative study in 100 adult patients. Circulation 1985;71:1162-9.

    Article  CAS  PubMed  Google Scholar 

  20. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-10.

    Article  CAS  PubMed  Google Scholar 

  21. Schaefer WM, Lipke CS, Nowak B, Kaiser HJ, Buecker A, Krombach GA, et al. Validation of an evaluation routine for left ventricular volumes, ejection fraction and wall motion from gated cardiac FDG PET: A comparison with cardiac magnetic resonance imaging. Eur J Nucl Med Mol Imaging 2003;30:545-53.

    Article  PubMed  Google Scholar 

  22. Rajappan K, Livieratos L, Camici PG, Pennell DJ. Measurement of ventricular volumes and function: A comparison of gated PET and cardiovascular magnetic resonance. J Nucl Med 2002;43:806-10.

    PubMed  Google Scholar 

  23. Li Y, Wang L, Zhao SH, He ZX, Wang DY, Guo F, et al. Gated F-18 FDG PET for assessment of left ventricular volumes and ejection fraction using QGS and 4D-MSPECT in patients with heart failure: A comparison with cardiac MRI. PLoS ONE 2014;. doi:10.1371/journal.pone.0080227.

    Google Scholar 

  24. Chander A, Brenner M, Lautamaki R, Voicu C, Merrill J, Bengel FM. Comparison of measures of left ventricular function from electrocardiographically gated 82Rb PET with contrast-enhanced CT ventriculography: A hybrid PET/CT analysis. J Nucl Med 2008;49:1643-50.

    Article  PubMed  Google Scholar 

  25. Wei H, Tian C, Schindler TH, Qiu M, Lu M, Shen R, et al. The impacts of severe perfusion defects, akinetic/dyskinetic segments, and viable myocardium on the accuracy of volumes and LVEF measured by gated (9)(9)mTc-MIBI SPECT and gated (1)(8)F-FDG PET in patients with left ventricular aneurysm: Cardiac magnetic resonance imaging as the reference. J Nucl Cardiol 2014;21:1230-44.

    Article  PubMed  Google Scholar 

  26. Hofman HA, Knaapen P, Boellaard R, Bondarenko O, Gotte MJ, van Dockum WG, et al. Measurement of left ventricular volumes and function with O-15-labeled carbon monoxide gated positron emission tomography: Comparison with magnetic resonance imaging. J Nucl Cardiol 2005;12:639-44.

    Article  PubMed  Google Scholar 

  27. Mullally J, Goyal P, Simprini LA, Afroz A, Kochav JD, Codella N, et al. Marked variability in published CMR criteria for left ventricular basal slice selection—Impact of methodological discrepancies on LV mass quantification. J Cardiovasc Magn Reson 2013;15:P101.

    PubMed Central  Google Scholar 

  28. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for cardiovascular magnetic resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 2013;15:35.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vogel-Claussen J, Finn JP, Gomes AS, Hundley GW, Jerosch-Herold M, Pearson G, et al. Left ventricular papillary muscle mass: Relationship to left ventricular mass and volumes by magnetic resonance imaging. J Comput Assist Tomogr 2006;30:426-32.

    Article  PubMed  Google Scholar 

  30. Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 2002;90:29-34.

    Article  PubMed  Google Scholar 

  31. Beanlands RS, Armstrong WF, Hicks RJ, Nicklas J, Moore C, Hutchins GD, et al. The effects of afterload reduction on myocardial carbon 11-labeled acetate kinetics and noninvasively estimated mechanical efficiency in patients with dilated cardiomyopathy. J Nucl Cardiol 1994;1:3-16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Authors thank cardiologist Inger Sihm at Aarhus Hjerteklinik and The Department of Cardiology at the Regional Hospital in Horsens, Denmark for assisting in subject recruitment. We also thank Anders Jorsal, Bent Roni Ranghøj Nielsen and Peter Iversen for their assistance during protocol preparation.

Disclosure

This study received financial assistance from the Lundbeck Foundation, Arvid Nilssons Foundation, Karen Elise Jensens Foundation and Snedkermester Sophus Jacobsen & Hustru Astrid Jacobsens Foundation. Henrik Wiggers is principal investigator in studies involving the following pharmaceutical companies; NovoNordisk, MSD, Bayer, Daiichi-Sankyo, Novartis, Sanofi-Aventis, Pfizer. For Nils Henrik Stubkjaer Hansson, Johannes Hendrik Harms, Lars Poulsen Tolbod, Won Yong Kim, Esben Sovso Szocska Hansen, Tomas Zaremba, Steen Jakobsen, Jorgen Frokiaer and Jens Sorensen, there are no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Henrik Hansson MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansson, N.H., Tolbod, L., Harms, J. et al. Evaluation of ECG-gated [11C]acetate PET for measuring left ventricular volumes, mass, and myocardial external efficiency. J. Nucl. Cardiol. 23, 670–679 (2016). https://doi.org/10.1007/s12350-015-0331-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-015-0331-0

Keywords

Navigation