Skip to main content
Log in

Comparison of attenuation, dual-energy-window, and model-based scatter correction of low-count SPECT to 82Rb PET/CT quantified myocardial perfusion scores

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

New reconstruction algorithms allow reduction in acquisition times or the amount of injected radioactivity. We examined the impact of different corrections on low-count clinical SPECT myocardial perfusion images (MPI) and compared to 82Rb PET/CT. We compared no corrections (NC) to attenuation correction (AC) with and without scatter correction by either a dual-energy-window (AC-DEW) or model-based (AC-ESSE) approach. All reconstructions included resolution recovery.

Methods

56 Patients were imaged using a standard rest/stress Tc-99m-tetrofosmin MPI SPECT/CT protocol with an additional half-time acquisition. A 82Rb-rest/stress PET/CT MPI was acquired within 4 weeks. Reconstruction methods were compared using summed rest/stress/difference scores from an objective algorithm (SRS/SSS/SDS).

Results

The SRS and SSS for NC were significantly (P < .01) higher than for AC, but well correlated (r ≥ 0.87). The correlation in SRS/SSS among AC, AC-DEW, and AC-ESSE was excellent (r ≥ 0.98). AC-ESSE and AC-DEW had higher SRS (P ≤ .05) than AC, but the SDS values were not significantly different. Concordance with PET normal/abnormal classification was 76% for NC and ≥85% for the AC methods.

Conclusion

AC significantly improves the accuracy of low-count myocardial perfusion SPECT half-time imaging for the detection of disease compared to NC. Compared to PET, there was no significant difference among AC, AC-DEW, and AC-ESSE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cerqueira MD, Allman KC, Ficaro EP, Hansen CL, Nichols KJ, Thompson RC, et al. Recommendations for reducing radiation exposure in myocardial perfusion imaging. J Nucl Cardiol 2010;17:709-18.

    Article  PubMed  Google Scholar 

  2. Ali I, Ruddy TD, Almgrahi A, Anstett FG, Wells RG. Half-time SPECT myocardial perfusion imaging with attenuation correction. J Nucl Med 2009;50:554-62.

    Article  PubMed  Google Scholar 

  3. Bateman TM, Heller GV, McGhie AI, Courter SA, Golub RA, Case JA, et al. Multicenter investigation comparing a highly efficient half-time stress-only attenuation correction approach against standard rest-stress Tc-99m SPECT imaging. J Nucl Cardiol 2009;16:726-35.

    Article  PubMed  Google Scholar 

  4. Venero CV, Heller GV, Bateman TM, McGhie AI, Ahlberg AW, Katten D, et al. A multicenter evaluation of a new post-processing method with depth-dependent collimator resolution applied to full-time and half-time acquisitions without and with simultaneously acquired attenuation correction. J Nucl Cardiol 2009;16:714-25.

    Article  PubMed  Google Scholar 

  5. DePuey EG, Bommireddipalli S, Clark J, Thompson L, Srour Y. Wide beam reconstruction “quarter-time” gated myocardial perfusion SPECT functional imaging: a comparison to “full-time” ordered subset expectation maximum. J Nucl Cardiol 2009;16:736-52.

    Article  PubMed  Google Scholar 

  6. Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med 2010;51:921-8.

    Article  PubMed  Google Scholar 

  7. Kangasmaa TS, Kuikka JT, Vanninen EJ, Mussalo HM, Laitinen TP, Sohlberg AO. Half-time myocardial perfusion SPECT imaging with attenuation and Monte Carlo-based scatter correction. Nucl Med Commun 2011;32:1040-5.

    Article  PubMed  Google Scholar 

  8. Germano G, Slomka PJ, Berman DS. Attenuation correction in cardiac SPECT: The boy who cried wolf? J Nucl Cardiol 2007;14:25-35.

    Article  PubMed  Google Scholar 

  9. Garcia EV. SPECT attenuation correction: An essential tool to realize nuclear cardiology’s manifest destiny. J Nucl Cardiol 2007;14:16-24.

    Article  PubMed  Google Scholar 

  10. King MA, Tsui BMW, Pan TS. Attenuation compensation for cardiac single-photon emission computed tomographic imaging: Part 1. Impact of attenuation and methods of estimating attenuation maps. J Nucl Cardiol 1995;2:513-24.

    Article  PubMed  CAS  Google Scholar 

  11. Hutton BF. Cardiac single-photon emission tomography: Is attenuation correction enough? Eur J Nucl Med 1997;24:713-5.

    PubMed  CAS  Google Scholar 

  12. Hutton BF, Buvat I, Beekman FJ. Review and current status of SPECT scatter correction. Phys Med Biol 2011;56:R85-112.

    Article  PubMed  Google Scholar 

  13. Jaszczak RJ, Greer KL, Floyd CE Jr, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984;25:893-900.

    PubMed  CAS  Google Scholar 

  14. Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 2004;31:761-82.

    Article  PubMed  Google Scholar 

  15. Xiao J, de Wit TC, Staelens SG, Beekman FJ. Evaluation of 3D Monte Carlo-based scatter correction for 99mTc cardiac perfusion SPECT. J Nucl Med 2006;47:1662-9.

    PubMed  Google Scholar 

  16. Beekman FJ, Kamphuis C, Frey EC. Scatter compensation methods in 3D iterative SPECT reconstruction: A simulation study. Phys Med Biol 1997;42:1619-32.

    Article  PubMed  CAS  Google Scholar 

  17. Kadrmas DJ, Frey EC, Karimi SS, Tsui BM. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction. Phys Med Biol 1998;43:857-73.

    Article  PubMed  CAS  Google Scholar 

  18. Sohlberg A, Watabe H, Iida H. Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT. Phys Med Biol 2008;53:N277-85.

    Article  PubMed  CAS  Google Scholar 

  19. Ritt P, Vija H, Hornegger J, Kuwert T. Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging 2011;38:S69-77.

    Article  PubMed  Google Scholar 

  20. Mc Ardle BA, Dowsley TF, deKemp RA, Wells GA, Beanlands RS. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease? A systematic review and meta-analysis. J Am Coll Cardiol 2012;60:1828-37.

    Article  PubMed  Google Scholar 

  21. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: Comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006;13:24-33.

    Article  PubMed  Google Scholar 

  22. Dhar R, Ananthasubramaniam K. Rubidium-82 cardiac positron emission tomography imaging: An overview for the general cardiologist. Cardiol Rev 2011;19:255-63.

    Article  PubMed  Google Scholar 

  23. He X, Links JM, Gilland KL, Tsui BM, Frey EC. Comparison of 180 degrees and 360 degrees acquisition for myocardial perfusion SPECT with compensation for attenuation, detector response, and scatter: Monte Carlo and mathematical observer results. J Nucl Cardiol 2006;13:345-53.

    Article  PubMed  Google Scholar 

  24. Frey EC, Tsui BMW. A new method for modeling the spatially-variant, object-dependent scatter response function in SPECT. 1996 Conference Record for the IEEE Nuclear Science Symposium, vol 2. 1997, pp 1082-86.

  25. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.

    Article  PubMed  Google Scholar 

  26. Hachamovitch R, Berman DS, Kiat H, Cohen I, Cabico JA, Friedman J, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease. Circulation 1996;93:905-14.

    Article  PubMed  CAS  Google Scholar 

  27. Malhotra S, Follansbee WP, Soman P. Predictors of an ischemic electrocardiographic response in patients with exercise-induced myocardial ischemia. J Nucl Cardiol 2011;18:678-84.

    Article  PubMed  Google Scholar 

  28. Dewan A, Ali I, Ruddy TD, Wells RG. Single CT for attenuation correction of rest/stress cardiac SPECT perfusion imaging [Abstract]. J Nucl Med 2009;50:482.

    Google Scholar 

  29. Ahlman M, Suranyi P, Spicer K, Latour E, Gordon L. Comparison of one vs two CTs for attenuation correction of both rest and stress SPECT data for myocardial perfusion imaging [Abstract]. J Nucl Med 2010;51:436.

    Google Scholar 

  30. Bai C, Conwell R, Old R, Maddahi J. Can a single CT scan be used for both stress and rest attenuation correction in cardiac SPECT? [Abstract]. J Nucl Med 2010;51:473.

    Google Scholar 

  31. Fleischmann S, Koepfli P, Namdar M, Wyss CA, Jenni R, Kaufmann PA. Gated (99m)Tc-tetrofosmin SPECT for discriminating infarct from artifact in fixed myocardial perfusion defects. J Nucl Med 2004;45:754-9.

    PubMed  Google Scholar 

  32. Links JM, DePuey EG, Taillefer R, Becker LC. Attenuation correction and gating synergistically improve the diagnostic accuracy of myocardial perfusion SPECT. J Nucl Cardiol 2002;9:183-7.

    Article  PubMed  Google Scholar 

  33. El Fakhri G, Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 2000;41:1400-8.

    PubMed  Google Scholar 

  34. Fricke E, Fricke H, Weise R, Kammeier A, Hagedorn R, Lotz N, et al. Attenuation correction of myocardial SPECT perfusion images with low-dose CT: Evaluation of the method by comparison with perfusion PET. J Nucl Med 2005;46:736-44.

    PubMed  Google Scholar 

  35. Esteves FP, Nye JA, Khan A, Folks RD, Halkar RK, Garcia EV, et al. Prompt-gamma compensation in Rb-82 myocardial perfusion 3D PET/CT. J Nucl Cardiol 2010;17:247-53.

    Article  PubMed  Google Scholar 

  36. Berman DS, Germano G, Slomka PJ. Improvement in PET myocardial perfusion image quality and quantification with flurpiridaz F-18. J Nucl Cardiol 2012;19:S38-45.

    Article  PubMed  Google Scholar 

  37. Maddahi J. Properties of an ideal PET perfusion tracer: New PET tracer cases and data. J Nucl Cardiol 2012;19:S30-7.

    Article  PubMed  Google Scholar 

  38. Machac J. Cardiac positron emission tomography imaging. Semin Nucl Med 2005;35:17-36.

    Article  PubMed  Google Scholar 

  39. Lortie M, Beanlands RS, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Marlie Poirier and the staff in Nuclear Cardiology and PET imaging at the University of Ottawa Heart Institute. This study was funded in part by a peer reviewed grant from the Ontario Research Fund (2008-2013, RE-02-038). Dr T Ruddy received partial salary support from the Vered Chair in Cardiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Glenn Wells PhD, FCCPM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wells, R.G., Soueidan, K., Timmins, R. et al. Comparison of attenuation, dual-energy-window, and model-based scatter correction of low-count SPECT to 82Rb PET/CT quantified myocardial perfusion scores. J. Nucl. Cardiol. 20, 785–796 (2013). https://doi.org/10.1007/s12350-013-9738-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-013-9738-7

Keywords

Navigation