Skip to main content
Log in

Patient-centered imaging

  • ASNC Preferred Practice Statement
  • Published:
Journal of Nuclear Cardiology Aims and scope

An Erratum to this article was published on 07 March 2012

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. J Am Coll Cardiol 2009;53:2201-29.

    Article  PubMed  Google Scholar 

  2. Cerqueira MD, Allman KC, Ficaro EP, Hansen CL, Nichols KJ, Thompson RC, et al. ASNC information statement: Recommendations for reducing radiation exposure in myocardial perfusion imaging. J Nucl Cardiol 2010;17:709-18.

    Article  PubMed  Google Scholar 

  3. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation 2007;116:1290-305.

    Article  PubMed  Google Scholar 

  4. Holly TA, Abbott BG, Al-Mallah MH, Calnon DA, Cohen MC, Difilippo FP, et al. ASNC imaging guidelines for nuclear cardiology procedures: Single photon-emission computed tomography. J Nucl Cardiol 2010;17:941-73.

    Article  PubMed  Google Scholar 

  5. Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging: Similar patient mortality with reduced radiation exposure. J Am Coll Cardiol 2010;55:221-30.

    Article  PubMed  Google Scholar 

  6. Duvall WL, Wijetunga MN, Klein TM, et al. The prognosis of a normal stress-only Tc-99m myocardial perfusion imaging study. J Nucl Cardiol 2010;17:370-7.

    Article  PubMed  Google Scholar 

  7. Gibson PB, Demus D, Noto R, Hudson W, Johnson LL. Low event rate for stress-only perfusion imaging in patients evaluated for chest pain. J Am Coll Cardiol 2002;39:999-1004.

    Article  PubMed  Google Scholar 

  8. Gal R, Ahmad M. Cost-saving approach to normal technetium-99m sestamibi myocardial perfusion scan. Am J Cardiol 1996;78:1047-9.

    Article  PubMed  CAS  Google Scholar 

  9. Bateman TM, Heller GV, McGhie AI, et al. Multicenter investigation comparing a highly efficient half-time stress-only attenuation correction approach against standard rest-stress Tc-99m SPECT imaging. J Nucl Cardiol 2009;16:726-35.

    Article  PubMed  Google Scholar 

  10. Gemignani AS, Muhlebach SG, Abbott BG, et al. Stress-only or stress/rest myocardial perfusion imaging in patients undergoing evaluation for bariatric surgery. J Nucl Cardiol 2011;18:886-92.

    Article  PubMed  Google Scholar 

  11. Hayes SW, De Lorenzo A, Hachamovitch R, et al. Prognostic implications of combined prone and supine acquisitions in patients with equivocal or abnormal supine myocardial perfusion SPECT. J Nucl Med 2003;44:1633-40.

    PubMed  Google Scholar 

  12. Mahmarian JJ. Stress only myocardial perfusion imaging: Is it time for a change? J Nucl Cardiol 2010;17:529-35.

    Article  PubMed  Google Scholar 

  13. Iskandrian AE. Stress-only myocardial perfusion imaging: A new paradigm. J Am Coll Cardiol 2010;55:231-3.

    Article  PubMed  Google Scholar 

  14. He ZX, Medrano R, Hays JT, Mahmarian JJ, Verani MS. Nitroglycerin-augmented 201T1 reinjection enhances detection of reversible myocardial hypoperfusion. A randomized, double-blind, parallel, placebo-controlled trial. Circulation 1997;95:1799-805.

    Article  PubMed  CAS  Google Scholar 

  15. Sciagrà R, Bisi G, Santoro GM, et al. Comparison of baseline-nitrate technetium-99m sestamibi with rest-redistribution thallium-201 tomography in detecting viable hibernating myocardium and predicting postrevascularization recovery. J Am Coll Cardiol 1997;30:384-91.

    Article  PubMed  Google Scholar 

  16. Maurea S, Cuocolo A, Soricelli A, et al. Enhanced detection of viable myocardium by technetium-99m-MIBI imaging after nitrate administration in chronic coronary artery disease. J Nucl Med 1995;36:1945-52.

    PubMed  CAS  Google Scholar 

  17. Kontos MC. Imaging patients with chest pain in the Emergency Department. In: Zaret BL, Beller GA, editors. Clinical nuclear cardiology: State of the art and future directions. 4th ed. Philadelphia, PA: Mosby, Inc.; 2010. p. 531-44.

    Chapter  Google Scholar 

  18. Heller GV, Stowers SA, Hendel RC, et al. Clinical value of acute rest technetium-99m tetrofosmin tomographic myocardial perfusion imaging in patients with acute chest pain and nondiagnostic electrocardiograms. J Am Coll Cardiol 1998;31:1011-7.

    Article  PubMed  CAS  Google Scholar 

  19. Mandalapu BP, Amato M, Stratmann HG. Technetium Tc 99m sestamibi myocardial perfusion imaging: Current role for evaluation of prognosis. Chest 1999;115:1684-94.

    Article  PubMed  CAS  Google Scholar 

  20. Udelson JE, Beshansky JR, Ballin DS, et al. Myocardial perfusion imaging for evaluation and triage of patients with suspected acute cardiac ischemia: A randomized controlled trial. JAMA 2002;288:2693-700.

    Article  PubMed  Google Scholar 

  21. King MA, Tsui BMW, Pretorius PH. Attenuation/scatter/resolution correction: Physics aspects. In: Zaret BL, Beller GA, editors. Clinical nuclear cardiology: State of the art and future directions. 3rd ed. Philadelphia, PA: Mosby, Inc.; 2005. p. 89-101.

    Google Scholar 

  22. Heller GV, Bateman TM, Johnson LL, et al. Clinical value of attenuation correction in stress-only Tc-99m sestamibi SPECT imaging. J Nucl Cardiol 2004;11:273-81.

    Article  PubMed  Google Scholar 

  23. Almedia P, Bendriem B, de Dreuille O, Peltier A, Perrot C, Brulon V. Dosimetry of transmission measurements in nuclear medicine: A study using anthropomorphic phantoms and thermoluminescent dosimeters. Eur J Nucl Med 1998;25:1435-41.

    Article  Google Scholar 

  24. Perisinakis K, Theocharopoulos N, Karkavitsas N, Damilakis J. Patient effective radiation dose and associated risk from transmission scans using 153Gd line sources in cardiac spect studies. Health Phys 2002;83:66-74.

    Article  PubMed  CAS  Google Scholar 

  25. Koepfli P, Hany TF, Wyss CA, et al. CT attenuation correction for myocardial perfusion quantification using a PET/CT hybrid scanner. J Nucl Med 2004;45:537-42.

    PubMed  Google Scholar 

  26. Einstein AJ, Johnson LL, Bokhari S, et al. Agreement of visual estimation of coronary artery calcium from low-dose CT attenuation correction scans in hybrid PET/CT and SPECT/CT with standard Agatston score. J Am Coll Cardiol 2010;56:1914-21.

    Article  PubMed  Google Scholar 

  27. Sawyer LJ, Starritt HC, Hiscock SC, Evans MJ. Effective doses to patients from CT acquisitions on the GE Infinia Hawkeye: A comparison of calculation methods. Nucl Med Commun 2008;29:144-9.

    Article  PubMed  Google Scholar 

  28. Patton JA, Slomka PJ, Germano G, Berman DS. Recent technologic advances in nuclear cardiology. J Nucl Cardiol 2007;14:501-13.

    Article  PubMed  Google Scholar 

  29. Sharir T, Ben-Haim S, Merzon K, et al. High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovasc Imaging 2008;1:156-63.

    Article  PubMed  Google Scholar 

  30. Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: New designs and clinical implications. J Nucl Med 2011;52:210-7.

    Article  PubMed  Google Scholar 

  31. Duvall WL, Croft LB, Godiwala T, Ginsberg E, George T, Henzlova MJ. Reduced isotope dose with rapid SPECT MPI imaging: Initial experience with a CZT SPECT camera. J Nucl Cardiol 2010;17:1009-14.

    Article  PubMed  Google Scholar 

  32. Borges-Neto S, Pagnanelli RA, Shaw LK, et al. Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies. J Nucl Cardiol 2007;14:555-65.

    Article  PubMed  Google Scholar 

  33. DePuey EG, Gadiraju R, Clark J, Thompson L, Anstett F, Shwartz SC. Ordered subset expectation maximization and wide beam reconstruction “half-time” gated myocardial perfusion SPECT functional imaging: A comparison to “full-time” filtered backprojection. J Nucl Cardiol 2008;15:547-63.

    Article  PubMed  Google Scholar 

  34. DePuey EG, Bommireddipalli S, Clark J, Thompson L, Srour Y. Wide beam reconstruction “quarter-time” gated myocardial perfusion SPECT functional imaging: A comparison to “full-time” ordered subset expectation maximum. J Nucl Cardiol 2009;16:736-52.

    Article  PubMed  Google Scholar 

  35. Maddahi J, Mendez R, Mahmarian JJ, et al. Prospective multicenter evaluation of rapid, gated SPECT myocardial perfusion upright imaging. J Nucl Cardiol 2009;16:351-7.

    Article  PubMed  Google Scholar 

  36. DePuey EG, Bommireddipalli S, Clark J, Leykekhman A, Thompson LB, Friedman M. A comparison of the image quality of full-time myocardial perfusion SPECT vs. wide beam reconstruction half-time and half-dose SPECT. J Nucl Cardiol 2011;18:273-80.

    Article  PubMed  Google Scholar 

  37. Duvall WL, Croft LB, Ginsberg ES, et al. Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J Nucl Cardiol 2011;18:847-57.

    Article  PubMed  Google Scholar 

  38. DePuey EG. New software methods to cope with reduced counting statistics: Shorter SPECT acquisitions and many more possibilities. J Nucl Cardiol 2009;16:335-8.

    Article  PubMed  Google Scholar 

  39. Klocke FJ, Baird MG, Bateman TM, Berman DS, Carabello BA, Cerqueira MD, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Radionuclide Imaging). J Am Coll Cardiol 2003;42:1318-33.

    Article  PubMed  Google Scholar 

  40. Mahmarian JJ. Monitoring medical therapy: The role of noninvasive imaging. In: Dilsizian V, Narula J, Braunwald E, editors. Atlas of nuclear cardiology 2nd ed. Philadelphia, PA: Current Medicine; 2006. p. 191-210.

    Google Scholar 

  41. Mahmarian JJ, Dakik HA, Filipchuk NG, et al. An initial strategy of intensive medical therapy is comparable to that of coronary revascularization for suppression of scintigraphic ischemia in high-risk but stable survivors of acute myocardial infarction. J Am Coll Cardiol 2006;48:2458-67.

    Article  PubMed  Google Scholar 

  42. Shaw LJ, Berman DS, Maron DJ, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: Results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 2008;117:1283-91.

    Article  PubMed  Google Scholar 

  43. Dakik HA, Kleiman NS, Farmer JA, et al. Intensive medical therapy versus coronary angioplasty for suppression of myocardial ischemia in survivors of acute myocardial infarction: A prospective, randomized pilot study. Circulation 1998;98:2017-23.

    Article  PubMed  CAS  Google Scholar 

  44. Sherif HM, Saraste A, Weidl E, et al. Evaluation of a novel (18)F-labeled positron-emission tomography perfusion tracer for the assessment of myocardial infarct size in rats. Circ Cardiovasc Imaging 2009;2:77-84.

    Article  PubMed  Google Scholar 

  45. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Gropler RJ, et al. ASNC imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 2009;16. doi:10.1007/s12350-009-9094-9.

  46. Goudarzi B, Fukushima K, Bravo P, Merrill J, Bengel FM. Comparison of the myocardial blood flow response to regadenoson and dipyridamole: A quantitative analysis in patients referred for clinical (82)Rb myocardial perfusion PET. Eur J Nucl Med Mol Imaging 2011;38:1908-16.

    Article  PubMed  CAS  Google Scholar 

  47. Dorbala S, Hachamovitch R, Curillova Z, et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging 2009;2:846-54.

    Article  PubMed  Google Scholar 

  48. Klein R, Renaud JM, Ziadi MC, et al. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 pet and a highly automated analysis program. J Nucl Cardiol 2010;17:600-16.

    Article  PubMed  Google Scholar 

  49. El Fakhri G, Kardan A, Sitek A, et al. Reproducibility and accuracy of quantitative myocardial blood flow assessment with (82)Rb PET: Comparison with (13)N-ammonia PET. J Nucl Med 2009;50:1062-71.

    Article  PubMed  CAS  Google Scholar 

  50. Senthamizhchelvan S, Bravo PE, Esaias C, et al. Human biodistribution and radiation dosimetry of 82Rb. J Nucl Med 2010;51:1592-9.

    Article  PubMed  Google Scholar 

  51. Bateman TM, Heller GV, McGhie AI, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: Comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006;13:24-33.

    Article  PubMed  Google Scholar 

  52. Yoshinaga K, Chow BJ, Williams K, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 2006;48:1029-39.

    Article  PubMed  Google Scholar 

  53. Centers for Medicare & Medicaid Services (CMS), HHS. Medicare program; payment policies under the physician fee schedule and other revisions to part B for CY2011. Federal Register 2010;75:73169-860.

    Google Scholar 

  54. Schinkel AFL, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: Diagnosis and patient outcomes. Curr Probl Cardiol 2007;32:375-410.

    Article  PubMed  Google Scholar 

  55. Abraham A, Nichol G, Williams KA, et al. 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: The Ottawa-FIVE substudy of the PARR 2 trial. J Nucl Med 2010;51:567-74.

    Article  PubMed  Google Scholar 

  56. Hlatky MA, Boineau RE, Higginbotham MB, et al. A brief self-administered questionnaire to determine functional capacity (the Duke activity status index). Am J Cardiol 1989;64:651-4.

    Article  PubMed  CAS  Google Scholar 

  57. Kligfield P, Lauer MS. Exercise electrocardiogram testing: Beyond the ST segment. Circulation 2006;114:2070-82.

    Article  PubMed  Google Scholar 

  58. Mark DB, Shaw L, Harrell FE, et al. Prognostic value of a treadmill exercise score in outpatients with suspected coronary artery disease [see comments]. N Engl J Med 1991;325:849-53.

    Article  PubMed  CAS  Google Scholar 

  59. Alexander KP, Shaw LJ, Shaw LK, Delong ER, Mark DB, Peterson ED. Value of exercise treadmill testing in women. J Am Coll Cardiol 1998;32:1657-64.

    Article  PubMed  CAS  Google Scholar 

  60. Hachamovitch R, Berman DS, Kiat H, Cohen I, Friedman JD, Shaw LJ. Value of stress myocardial perfusion single photon emission computed tomography in patients with normal resting electrocardiograms: An evaluation of incremental prognostic value and cost-effectiveness. Circulation 2002;105:823-9.

    Article  PubMed  Google Scholar 

  61. Institute of Medicine. Cardiovascular disability: Updating the social security listings. Washington, DC: The National Academies Press; 2010.

    Google Scholar 

  62. Vaduganathan P, He ZX, Raghavan C, Mahmarian JJ, Verani MS. Detection of left anterior descending coronary artery stenosis in patients with left bundle branch block: Exercise, adenosine or dobutamine imaging? J Am Coll Cardiol 1996;28:543-50.

    Article  PubMed  CAS  Google Scholar 

  63. Lakkis NM, He ZX, Verani MS. Diagnosis of coronary artery disease by exercise thallium-201 tomography in patients with a right ventricular pacemaker. J Am Coll Cardiol 1997;29:1221-5.

    Article  PubMed  CAS  Google Scholar 

  64. Iskandrian AE. Detecting coronary artery disease in left bundle branch block. J Am Coll Cardiol 2006;48:1935-7.

    Article  PubMed  Google Scholar 

  65. Antman EM, Anbe DT, Armstrong PW, Bates ER, Green LA, Hand M, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction—executive summary: A report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to revise the 1999 guidelines for the management of patients with acute myocardial infarction). Circulation 2004;110:588-636.

    Article  PubMed  Google Scholar 

  66. Mahmarian JJ, Shaw LJ, Filipchuk NG, et al. A multinational study to establish the value of early adenosine technetium-99m sestamibi myocardial perfusion imaging in identifying a low-risk group for early hospital discharge after acute myocardial infarction. J Am Coll Cardiol 2006;48:2448-57.

    Article  PubMed  Google Scholar 

  67. Gibbons RJ, Balady GJ, Beasley JW, Bricker JT, Durvernoy WF, Froelicher VF, et al. ACC/AHA guidelines for exercise testing: A report of the American College of Cardiology/American Heart Association task force on practice guidelines (committee on exercise testing). J Am Coll Cardiol 1997;30:260-315.

    Article  PubMed  CAS  Google Scholar 

  68. Lette J, Tatum JL, Fraser S, et al. Safety of dipyridamole testing in 73,806 patients: The multicenter dipyridamole safety study. J Nucl Cardiol 1995;2:3-17.

    Article  PubMed  CAS  Google Scholar 

  69. Cerqueira MD, Verani MS, Schwaiger M, Heo J, Iskandrian AE. Safety profile of adenosine stress perfusion imaging: Results from the Adenoscan multicenter trial registry. J Am Coll Cardiol 1994;23:384-9.

    Article  PubMed  CAS  Google Scholar 

  70. Hays JT, Mahmarian JJ, Cochran AJ, Verani MS. Dobutamine thallium-201 tomography for evaluating patients with suspected coronary artery disease unable to undergo exercise or vasodilator pharmacologic stress testing. J Am Coll Cardiol 1993;21:1583-90.

    Article  PubMed  CAS  Google Scholar 

  71. Cerqueira MD, Nguyen P, Staehr P, Underwood SR, Iskandrian AE. Effects of age, gender, obesity, and diabetes on the efficacy and safety of the selective A2A agonist regadenoson versus adenosine in myocardial perfusion imaging integrated ADVANCE-MPI trial results. JACC Cardiovasc Imaging 2008;1:307-16.

    Article  PubMed  Google Scholar 

  72. Leaker BR, O’Connor B, Hansel TT, et al. Safety of regadenoson, an adenosine A2A receptor agonist for myocardial perfusion imaging in mild asthma and moderate asthma patients: A randomized, double-blind placebo-controlled trial. J Nucl Cardiol 2008;15:329-36.

    Article  PubMed  Google Scholar 

  73. Thomas GS, Tammelin BR, Schiffman GL, et al. Safety of regadenoson, a selective adenosine A2A agonist, in patients with chronic obstructive pulmonary disease: A randomized, double-blind, placebo-controlled trial (RegCOPD trial). J Nucl Cardiol 2008;15:319-28.

    Article  PubMed  Google Scholar 

  74. Prenner B, McNutt B. Safety and tolerability of regadenoson in patients with asthma or COPD. Unpublished late-breaking clinical trial abstract presented at the 2010 annual scientific session of the American Society of Nuclear Cardiology in Philadelphia, PA, 25 September 2010.

  75. Zoghbi GJ, Htay T, Aqel R, Blackmon L, Heo J, Iskandrian AE. Effect of caffeine on ischemia detection by adenosine single-photon emission computed tomography perfusion imaging. J Am Coll Cardiol 2006;47:2296-302.

    Article  PubMed  CAS  Google Scholar 

  76. Henzlova MJ, Cerqueira MD, Hansen CL, Taillefer R, Yao S-S. ASNC imaging guidelines for nuclear cardiology procedures: Stress protocols and tracers. doi:10.1007/s12350-009-9062-4. http://www.asnc.org/imageuploads/ImagingGuidelinesStressProtocols021109.pdf. Accessed February 25, 2011.

  77. Shehata AR, Gillam LD, Mascitelli VA, et al. Impact of acute propranolol administration on dobutamine-induced myocardial ischemia as evaluated by myocardial perfusion imaging and echocardiography. Am J Cardiol 1997;80:268-72.

    Article  PubMed  CAS  Google Scholar 

  78. Hendel RC, Abbott BG, Bateman TM, Blankstein R, Calnon DA, Leppo JA, et al. ASNC information statement: The role of radionuclide myocardial perfusion imaging for asymptomatic individuals. J Nucl Cardiol 2011;18:3-15.

    Article  PubMed  Google Scholar 

  79. He ZX, Hedrick TD, Pratt CM, et al. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation 2000;101:244-51.

    Article  PubMed  CAS  Google Scholar 

  80. Berman DS, Wong ND, Gransar H, et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 2004;44:923-30.

    Article  PubMed  CAS  Google Scholar 

  81. Anand DV, Lim E, Raval U, Lipkin D, Lahiri A. Prevalence of silent myocardial ischemia in asymptomatic individuals with subclinical atherosclerosis detected by electron beam tomography. J Nucl Cardiol 2004;11:450-7.

    Article  PubMed  Google Scholar 

  82. Budoff MJ, Shaw LJ, Liu ST, et al. Long-term prognosis associated with coronary calcification: Observations from a registry of 25,253 patients. J Am Coll Cardiol 2007;49:1860-70.

    Article  PubMed  Google Scholar 

  83. Fleg JL, Gerstenblith G, Zonderman AB, et al. Prevalence and prognostic significance of exercise-induced silent myocardial ischemia detected by thallium scintigraphy and electrocardiography in asymptomatic volunteers. Circulation 1990;81:428-36.

    Article  PubMed  CAS  Google Scholar 

  84. Blumenthal RS, Becker DM, Moy TF, Coresh J, Wilder LB, Becker LC. Exercise thallium tomography predicts future clinically manifest coronary heart disease in a high-risk asymptomatic population. Circulation 1996;93:915-23.

    Article  PubMed  CAS  Google Scholar 

  85. Zellweger MJ, Hachamovitch R, Kang X, et al. Threshold, incidence, and predictors of prognostically high-risk silent ischemia in asymptomatic patients without prior diagnosis of coronary artery disease. J Nucl Cardiol 2009;16:193-200.

    Article  PubMed  Google Scholar 

  86. Thompson RC, Cullom SJ. Issues regarding radiation dosage of cardiac nuclear and radiography procedures. J Nucl Cardiol 2006;13:19-23.

    Article  PubMed  Google Scholar 

  87. Taillefer R, DePuey EG, Udelson JE, Beller GA, Latour Y, Reeves F. Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol 1997;29:69-77.

    Article  PubMed  CAS  Google Scholar 

  88. Schneider CA, Voth E, Gawlich S, et al. Significance of rest technetium-99m sestamibi imaging for the prediction of improvement of left ventricular dysfunction after Q wave myocardial infarction: Importance of infarct location adjusted thresholds. J Am Coll Cardiol 1998;32:648-54.

    Article  PubMed  CAS  Google Scholar 

  89. Evangelista L, Acampa W, Petretta M, et al. Incremental prognostic value of cardiac single-photon emission computed tomography after nitrate administration in patients with ischemic left ventricular dysfunction. J Nucl Cardiol 2009;16:38-44.

    Article  PubMed  Google Scholar 

  90. Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 2004;11:171-85.

    Article  PubMed  Google Scholar 

  91. Berman DS, Kang X, Hayes SW, et al. Adenosine myocardial perfusion single-photon emission computed tomography in women compared with men. Impact of diabetes mellitus on incremental prognostic value and effect on patient management. J Am Coll Cardiol 2003;41:1125-33.

    Article  PubMed  Google Scholar 

  92. Navare SM, Mather JF, Shaw LJ, Fowler MS, Heller GV. Comparison of risk stratification with pharmacologic and exercise stress myocardial perfusion imaging: A meta-analysis. J Nucl Cardiol 2004;11:551-61.

    Article  PubMed  Google Scholar 

  93. Mowatt G, Cook JA, Hillis GS, et al. 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: Systematic review and meta-analysis. Heart 2008;94:1386-93.

    Article  PubMed  CAS  Google Scholar 

  94. von Ballmoos MW, Haring B, Juillerat P, Alkadhi H. Meta-analysis: Diagnostic performance of low-radiation-dose coronary computed tomography angiography. Ann Intern Med 2011;154:413-20.

    Google Scholar 

  95. Min JK, Dunning A, Lin FY, et al. Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) of 23,854 patients without known coronary artery disease. J Am Coll Cardiol 2011;58:849-60.

    Article  PubMed  Google Scholar 

  96. Hulten EA, Carbonaro S, Petrillo SP, Mitchell JD, Villines TC. Prognostic value of cardiac computed tomography angiography: A systematic review and meta-analysis. J Am Coll Cardiol 2011;57:1237-47.

    Article  PubMed  Google Scholar 

  97. Meijboom WB, van Mieghem CA, Mollet NR, et al. 64-slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease. J Am Coll Cardiol 2007;50:1469-75.

    Article  PubMed  Google Scholar 

  98. Villines TC, Hulten EA, Shaw LJ, et al. Prevalence and severity of coronary artery disease and adverse events among symptomatic patients with coronary artery calcification scores of zero undergoing coronary computed tomography angiography: Results from the CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter) registry. J Am Coll Cardiol 2011;58:2533-40.

    Article  PubMed  Google Scholar 

  99. Kwon SW, Kim YJ, Shim J, et al. Coronary artery calcium scoring does not add prognostic value to standard 64-section CT angiography protocol in low-risk patients suspected of having coronary artery disease. Radiology 2011;259:92-9.

    Article  PubMed  Google Scholar 

  100. Sarwar A, Shaw LJ, Shapiro MD, et al. Diagnostic and prognostic value of absence of coronary artery calcification. J Am Coll Cardiol 2009;2:675-88.

    Google Scholar 

  101. Chang SM, Nabi F, Xu J, et al. The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk. J Am Coll Cardiol 2009;54:1872-82.

    Article  PubMed  Google Scholar 

  102. Anand DV, Lim E, Hopkins D, et al. Risk stratification in uncomplicated type 2 diabetes: Prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J 2006;27:713-21.

    Article  PubMed  Google Scholar 

  103. Schenker MP, Dorbala S, Hong EC, et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: A combined positron emission tomography/computed tomography study. Circulation 2008;117:1693-700.

    Article  PubMed  Google Scholar 

  104. Rozanski A, Gransar H, Wong ND, et al. Clinical outcomes after both coronary calcium scanning and exercise myocardial perfusion scintigraphy. J Am Coll Cardiol 2007;49:1352-61.

    Article  PubMed  CAS  Google Scholar 

  105. Batista JF, Pereztol O, Valdés JA, et al. Improved detection of myocardial perfusion reversibility by rest-nitroglycerin Tc-99m-MIBI: Comparison with Tl-201 reinjection. J Nucl Cardiol 1999;6:480-6.

    Article  PubMed  CAS  Google Scholar 

  106. Amsterdam EA, Kirk JD, Bluemke DA, Diercks D, Farkouh ME, Garvey JL, et al. American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology, Council on Cardiovascular Nursing, and Interdisciplinary Council on Quality of Care and Outcomes Research. Testing of low-risk patients presenting to the emergency department with chest pain: A scientific statement from the American Heart Association. Circulation 2010;122:1756-76.

    Article  PubMed  Google Scholar 

  107. Mahmarian JJ. Risk assessment in acute coronary syndromes. In: Iskandrian AE, Garcia EV, editors. Nuclear cardiac imaging: Principles and applications. 4th ed. New York, NY: Oxford University Press; 2008. p. 339-84.

    Google Scholar 

  108. Goldstein JA, Gallagher MJ, O’Neill WW, Ross MA, O’Neil BJ, Raff GL. A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 2007;49:863-71.

    Article  PubMed  Google Scholar 

  109. Nabi F, Chang SM, Xu J, Gigliotti E, Mahmarian JJ. Assessing risk in acute chest pain: The value of stress myocardial perfusion imaging in patients admitted through the emergency department. J Nucl Cardiol 2012. doi:10.1007/s12350-011-9484-7.

  110. Hoffmann U, Bamberg F, Chae CU, et al. Coronary computed tomography angiography for early triage of patients with acute chest pain: The ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial. J Am Coll Cardiol 2009;53:1642-50.

    Article  PubMed  Google Scholar 

  111. Goldstein JA, Chinnaiyan KM, Abidov A, et al. The CT-STAT (Coronary Computed Tomographic Angiography for Systematic Triage of Acute Chest Pain Patients to Treatment) Trial. J Am Coll Cardiol 2011;58:1414-22.

    Article  PubMed  Google Scholar 

  112. Laudon DA, Vukof LF, Breen JF, et al. Use of electron-beam computed tomography in the evaluation of chest pain patients in the emergency department. Ann Emerg Med 1999;33:15-21.

    Article  PubMed  CAS  Google Scholar 

  113. McLaughlin VV, Balogh T, Rich S. Utility of electron beam computed tomography to stratify patients presenting to the emergency room with chest pain. Am J Cardiol 1999;84:327-8.

    Article  PubMed  CAS  Google Scholar 

  114. Georgiou D, Budoff MF, Kaufer E, et al. Screening patients with chest pain in the emergency department using electron beam tomography: A follow-up study. J Am Coll Cardiol 2001;38:105-10.

    Article  PubMed  CAS  Google Scholar 

  115. Fernandez-Friera L, Garcia-Alvarez A, Bagheriannejad-Eshfani F, et al. Diagnostic value of coronary artery calcium scoring in low-intermediate risk patients evaluated in the emergency department for acute coronary syndrome. Am J Cardiol 2011;107:17-23.

    Article  PubMed  CAS  Google Scholar 

  116. Nabi F, Chang SM, Pratt CM, et al. Coronary artery calcium scoring in the emergency department: Identifying which patients with chest pain can be safely discharged home. Ann Emerg Med 2010;56:220-9.

    Article  PubMed  Google Scholar 

  117. Cannon CP, Weintraub WS, Demopoulos LA, et al. Comparison of early invasive and conservative strategies in patients with unstable coronary syndromes treated with the glycoprotein IIb/IIIa inhibitor tirofiban. N Engl J Med 2001;344:1879-87.

    Article  PubMed  CAS  Google Scholar 

  118. Gibson CM, Karha J, Murphy SA, et al. Early and long-term clinical outcomes associated with reinfarction following fibrinolytic administration in the Thrombolysis in Myocardial Infarction trials. J Am Coll Cardiol 2003;42:7-16.

    Article  PubMed  Google Scholar 

  119. Navare SM, Katten D, Johnson LL, et al. Risk stratification with electrocardiographic-gated dobutamine stress technetium-99m sestamibi single-photon emission tomographic imaging: Value of heart rate response and assessment of left ventricular function. J Am Coll Cardiol 2006;47:781-8.

    Article  PubMed  Google Scholar 

  120. Iskandrian AE, Bateman TM, Belardinelli L, et al. Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: Results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol 2007;14:645-58.

    Article  PubMed  Google Scholar 

  121. Mahmarian JJ, Cerqueira MD, Iskandrian AE, et al. Regadenoson induces comparable left ventricular perfusion defects as adenosine: A quantitative analysis from the ADVANCE MPI 2 trial. JACC Cardiovasc Imaging 2009;2:959-68.

    Article  PubMed  Google Scholar 

  122. Kitsiou AN, Srinivasan G, Quyyumi AA, Summers RM, Bacharach SL, Dilsizian V. Stress-induced reversible and mild-to-moderate irreversible thallium defects: Are they equally accurate for predicting recovery of regional left ventricular function after revascularization? Circulation 1998;98:501-8.

    Article  PubMed  CAS  Google Scholar 

  123. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: A meta-analysis. J Am Coll Cardiol 2002;39:1151-8.

    Article  PubMed  Google Scholar 

  124. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: Diagnosis and patient outcomes. Curr Probl Cardiol 2007;32:375-410.

    Article  PubMed  Google Scholar 

  125. Velazquez EJ, Lee KL, Deja MA, Jain A, Sopko G, et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med 2011;364:1607-16.

    Article  PubMed  CAS  Google Scholar 

  126. Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med 2011;364:1617-25.

    Article  PubMed  CAS  Google Scholar 

  127. Di Carli MF, Asgarzadie F, Schelbert HR, et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995;92:3436-44.

    Article  PubMed  Google Scholar 

  128. Inaba Y, Chen JA, Bergmann SR. Quantity of viable myocardium required to improve survival with revascularization in patients with ischemic cardiomyopathy: A meta-analysis. J Nucl Cardiol 2010;17:646-54.

    Article  PubMed  Google Scholar 

  129. Murray JJ, Weiler JM, Schwartz LB, et al. Safety of biodenoson, a selective adenosine A2A receptor agonist vasodilator pharmacologic stress agent, in healthy subjects with mild intermittent asthma. Circ Cardiovasc Imaging 2009;2:492-8.

    Article  PubMed  Google Scholar 

  130. DePuey EG. Krawczynska Eg, Robbins WL. Thallium-201 SPECT in coronary artery disease patients with left bundle branch block. J Nucl Med 1988;29:1479-85.

    PubMed  CAS  Google Scholar 

  131. Burns RJ, Galligan L, Wright LM, Lawand S, Burke RJ, Gladstone PJ. Improved specificity of myocardial thallium-201 single-photon emission computed tomography in patients with left bundle branch block by dipyridamole. Am J Cardiol 1991;68:504-8.

    Article  PubMed  CAS  Google Scholar 

  132. Skalidis EI, Kochiadakis GE, Koukouraki SI, Parthenakis FI, Karkavitsas NS, Vardas PE. Phasic coronary flow pattern and flow reserve in patients with left bundle branch block and normal coronary arteries. J Am Coll Cardiol 1999;33:1338-46.

    Article  PubMed  CAS  Google Scholar 

  133. Reyes E, Loong CY, Harbinson M, Donovan J, Anagnostopoulos C, Underwood SR. High-dose adenosine overcomes the attenuation of myocardial perfusion reserve caused by caffeine. J Am Coll Cardiol 2008;52:2008-16.

    Article  PubMed  CAS  Google Scholar 

  134. Gaemperli O, Schepis T, Koepfli P, et al. Interaction of caffeine with regadenoson-induced hyperemic myocardial blood flow as measured by positron emission tomography: A randomized, double-blind, placebo-controlled crossover trial. J Am Coll Cardiol 2008;51:328-9.

    Article  PubMed  Google Scholar 

  135. McCusker RR, Fuehrlein B, Goldberger BA, Gold MS, Cone EJ. Caffeine content of decaffeinated coffee. J Anal Toxicol 2006;30:611-3.

    PubMed  CAS  Google Scholar 

  136. McCusker RR, Goldberger BA, Cone EJ. Caffeine content of specialty coffees. J Anal Toxicol 2003;27:520-2.

    PubMed  CAS  Google Scholar 

  137. Beanlands RSB, Nahmias C, Gordon E, et al. The effects of beta(1)-blockade on oxidative metabolism and the metabolic cost of ventricular work in patients with left ventricular dysfunction: A double-blind, placebo-controlled, positron emission tomography study. Circulation 2000;102:2070-5.

    Article  PubMed  CAS  Google Scholar 

  138. Koepfli P, Wyss CA, Namdar M, et al. Beta-adrenergic blockade and myocardial perfusion in coronary artery disease: Differential effects in stenotic versus remote myocardial segments. J Nucl Med 2004;45:1626-31.

    PubMed  CAS  Google Scholar 

  139. Steele P, Sklar J, Kirch D, Vogel R, Rhodes CA. Thallium-201 myocardial imaging during maximal and submaximal exercise: Comparison of submaximal exercise with propranolol. Am Heart J 1983;106:1353-7.

    Article  PubMed  CAS  Google Scholar 

  140. Taillefer R, Ahlberg AW, Masood Y, et al. Acute beta-blockade reduces the extent and severity of myocardial perfusion defects with dipyridamole Tc-99m sestamibi SPECT imaging. J Am Coll Cardiol 2003;42:1475-83.

    Article  PubMed  CAS  Google Scholar 

  141. Bridges AB, Kennedy N, McNeill GP, Cook B, Pringle TH. The effect of atenolol on dipyridamole 201 Tl myocardial perfusion tomography in patients with coronary artery disease. Nucl Med Commun 1992;13:41-6.

    Article  PubMed  CAS  Google Scholar 

  142. Müller-Suur R, Eriksson SV, Strandberg LE, Mesko L. Comparison of adenosine and exercise stress test for quantitative perfusion imaging in patients on beta-blocker therapy. Cardiology 2011;95:112-8.

    Article  Google Scholar 

  143. Stegaru B, Loose R, Keller H, Buss J, Wetzel E. Effects of long-term treatment with 120 mg of sustained-release isosorbide dinitrate and 60 mg of sustained-release nifedipine on myocardial perfusion. Am J Cardiol 1988;61:74E-7E.

    Article  PubMed  CAS  Google Scholar 

  144. Mahmarian JJ, Fenimore NL, Marks GF, et al. Transdermal nitroglycerin patch therapy reduces the extent of exercise-induced myocardial ischemia: Results of a double-blind, placebo-controlled trial using quantitative thallium-201 tomography. J Am Coll Cardiol 1994;24:25-32.

    Article  PubMed  CAS  Google Scholar 

  145. Lewin HC, Hachamovitch R, Harris AG, et al. Sustained reduction of exercise perfusion defect extent and severity with isosorbide mononitrate (lmdur) as demonstrated by means of technetium 99m sestamibi. J Nucl Cardiol 2000;7:342-53.

    Article  PubMed  CAS  Google Scholar 

  146. Sharir T, Rabinowitz B, Livschitz S, et al. Underestimation of extent and severity of coronary artery disease by dipyridamole stress thallium-201 single-photon emission computed tomographic myocardial perfusion imaging in patients taking antianginal drugs. J Am Coll Cardiol 1998;31:1540-6.

    Article  PubMed  CAS  Google Scholar 

  147. Mahmarian JJ, Moyé LA, Verani MS, Bloom MF, Pratt CM. High reproducibility of myocardial perfusion defects in patients undergoing serial exercise thallium-201 tomography. Am J Cardiol 1995;75:1116-9.

    Article  PubMed  CAS  Google Scholar 

  148. Parisi AF, Hartigan PM, Folland ED. Evaluation of exercise thallium scintigraphy versus exercise electrocardiography in predicting survival outcomes and morbid cardiac events in patients with single- and double-vessel disease. Findings from the Angioplasty Compared to Medicine (ACME) Study. J Am Coll Cardiol 1997;30:1256-63.

    Article  PubMed  CAS  Google Scholar 

  149. Al-Mallah MH, Arida M, Garcia-Sayan E, et al. Safety of adenosine pharmacologic stress myocardial perfusion imaging in orthotopic cardiac transplant recipients: A single center experience of 102 transplant patients. Int J Cardiovasc Imaging 2011;27:1105-11.

    Article  PubMed  Google Scholar 

  150. Palani G, Husain Z, Salinas RC, et al. Safety of regadenoson as a pharmacologic stress agent for myocardial perfusion imaging in chronic kidney disease patients not on hemodialysis. J Nucl Cardiol 2011;18:605-11.

    Article  PubMed  Google Scholar 

  151. Aljaroudi W, Hermann D, Hage F, Heo J, Iskandrian AE. Safety of regadenoson in patients with end-stage renal disease. Am J Cardiol 2010;105:133-5.

    Article  PubMed  CAS  Google Scholar 

  152. Aljaroudi W, Iqbal F, Koneru J, Bhambhvani P, Heo J, Iskandrian AE. Safety of regadenoson in patients with end-stage liver disease. J Nucl Cardiol 2011;18:90-5.

    Article  PubMed  Google Scholar 

  153. Cavalcante JL, Barboza J, Ananthasubramaniam K. Regadenoson is a safe and well-tolerated pharmacological stress agent for myocardial perfusion imaging in post-heart transplant patients. J Nucl Cardiol 2011;18:628-33.

    Article  PubMed  Google Scholar 

  154. Safadi A, Homsi M, Maskoun W, et al. Perioperative risk predictors of cardiac outcomes in patients undergoing liver transplantation surgery. Circulation 2009;120:1189-94.

    Article  PubMed  Google Scholar 

  155. Zoghbi GJ, Patel AD, Ershadi RE, Heo J, Bynon JS, Iskandrian AE. Usefulness of preoperative stress perfusion imaging in predicting prognosis after liver transplantation. Am J Cardiol 2003;92:1066-71.

    Article  PubMed  Google Scholar 

  156. Aydinalp A, Bal U, Atar I, et al. Value of stress myocardial perfusion scanning in diagnosis of severe coronary artery disease in liver transplantation candidates. Transplant Proc 2009;41:3757-60.

    Article  PubMed  CAS  Google Scholar 

  157. Anavekar NS, McMurray JJ, Velazquez EJ, et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med 2004;351:1285-95.

    Article  PubMed  CAS  Google Scholar 

  158. Patel AD, Abo-Auda WS, Davis JM, et al. Prognostic value of myocardial perfusion imaging in predicting outcome after renal transplantation. Am J Cardiol 2003;92:146-51.

    Article  PubMed  Google Scholar 

  159. Hakeem A, Bhatti S, Dillie KS, et al. Predictive value of myocardial perfusion single-photon emission computed tomography and the impact of renal function on cardiac death. Circulation 2008;118:2540-9.

    Article  PubMed  Google Scholar 

  160. Hakeem A, Bhatti S, Karmali KN, et al. Renal function and risk stratification of diabetic and nondiabetic patients undergoing evaluation for coronary artery disease. JACC Cardiovasc Imaging 2010;3:734-45.

    Article  PubMed  Google Scholar 

  161. Venkataraman R, Hage FG, Dorfman T, et al. Role of myocardial perfusion imaging in patients with end-stage renal disease undergoing coronary angiography. Am J Cardiol 2008;102:1451-6.

    Article  PubMed  Google Scholar 

  162. Alqaisi F, Albadarin F, Jaffery Z, et al. Prognostic predictors and outcomes in patients with abnormal myocardial perfusion imaging and angiographically insignificant coronary artery disease. J Nucl Cardiol 2008;15:754-61.

    PubMed  Google Scholar 

  163. Elhendy A, van Domburg RT, Vantrimpont P, et al. Prediction of mortality in heart transplant recipients by stress technetium-99m tetrofosmin myocardial perfusion imaging. Am J Cardiol 2002;89:964-8.

    Article  PubMed  Google Scholar 

  164. Manrique A, Bernard M, Hitzel A, et al. Diagnostic and prognostic value of myocardial perfusion gated SPECT in orthotopic heart transplant recipients. J Nucl Cardiol 2010;17:197-206.

    Article  PubMed  Google Scholar 

  165. Elhendy A, Sozzi FB, van Domburg RT, et al. Accuracy of dobutamine tetrofosmin myocardial perfusion imaging for the noninvasive diagnosis of transplant coronary artery stenosis. J Heart Lung Transplant 2000;19:360-6.

    Article  PubMed  CAS  Google Scholar 

  166. Fleisher LA, Beckman JA, Brown KA, Calkins H, Chaikof EL, Fleischmann KE, et al. 2009 ACCF/AHA focused update on perioperative beta blockade incorporated into the ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2009;54:e13-118.

    Article  PubMed  Google Scholar 

  167. Stern S, Greenberg ID, Corne R. Effect of exercise supplementation on dipyridamole thallium-201 image quality. J Nucl Med 1991;32:1559-64.

    PubMed  CAS  Google Scholar 

  168. Thomas GS, Thompson RC, Miyamoto ML, Tze KI, et al. The RegEx trial: A randomized double-blind and active-controlled pilot study comparing regadenoson a selective A2A adenosine agonist with low level exercise in patients undergoing myocardial perfusion imaging. J Nucl Cardiol 2008;16:63-72.

    Article  Google Scholar 

Download references

Disclaimer

This Information Statement has been prepared from publicly available information and is intended for the personal use of ASNC members. Its purpose is to provide objective information and analysis on a timely basis; it is not intended to be prescriptive or definitive as to appropriate medical practice or minimal standards of care for patients. In addition, the standards discussed may not be appropriate for all practice settings or for all patients. ASNC expressly disclaims any liability for reliance upon this Information Statement.

Disclosures

The table represents the relationships of writing group members with industry and other entities that were reported by authors to be relevant to this document. A person is deemed to have a significant interest in a business if the interest represents ownership of 5% or more of the voting stock or share of the business entity or ownership of $10,000 or more of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. A relationship is considered to be modest if it is less than significant under the preceding definition. Relationships in this table are modest unless otherwise noted.

Participant

Consultant/Advisory Board

Speaker/Honoraria

Ownership/Partnership/Principal

Research

Institutional, Organizational, or Other Financial Benefit

Expert Witness

E. Gordon DePuey, MD Co-Chair)

Forest Laboratories

Cardinal Health

None

Astellas

None

None

UltraSpect Ltd.

Digirad

Digirad Inc.

Lantheus

Michael J. Fox Foundation

UltraSpect Ltd.

John J. Mahmarian, MD (Co-Chair)

Astellas

Astellas

None

Astellas

None

None

GE Healthcare

Gilead

Gilead

Todd D. Miller, MD (Co-Chair)

Astellas

None

None

Forest Laboratories

None

None

Lantheus Medical Imaging

Andrew J. Einstein, MD, PhD

None

Spectrum Dynamics

None

GE Healthcare

None

None

Spectrum Dynamics

Christopher L. Hansen, MD

Digirad

None

None

Digirad

GE Healthcare

None

Thomas A. Holly, MD

None

None

None

None

None

None

Edward J. Miller, MD, PhD

None

None

None

None

None

None

Donna M. Polk, MD, MPH

None

None

None

None

None

None

L. Samuel Wann, MD, PhD

None

None

None

None

None

None

Author information

Authors and Affiliations

Authors

Additional information

Unless reaffirmed, retired, or amended by express action of the Board of Directors of the American Society of Nuclear Cardiology, this Information Statement shall expire as of March 1, 2017.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DePuey, E.G., Mahmarian, J.J., Miller, T.D. et al. Patient-centered imaging. J. Nucl. Cardiol. 19, 185–215 (2012). https://doi.org/10.1007/s12350-012-9523-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-012-9523-z

Navigation