Skip to main content
Log in

Current state of hybrid imaging: attenuation correction and fusion

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Hendel RC, et al. The value and practice of attenuation correction for myocardial perfusion SPECT imaging: A Joint Position Statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Med 2002;43:273-80.

    Google Scholar 

  2. Bacharach SL, et al. PET myocardial glucose metabolism and perfusion imaging: Part 1—guidelines for data acquisition and patient preparation. J Nucl Cardiol 2003;10:543-56.

    Article  PubMed  Google Scholar 

  3. Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med 2003;44:291-315.

    PubMed  Google Scholar 

  4. O’Connor MK, Kemp BJ. Single-photon emission computed tomography/computed tomography: Basic instrumentation and innovations. Semin Nucl Med 2006;36:258-66.

    Article  PubMed  Google Scholar 

  5. Lang TF, et al. Description of a prototype emission transmission computed tomography imaging system. J Nucl Med 1992;33:1881-7.

    PubMed  CAS  Google Scholar 

  6. Beyer T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:1369-79.

    PubMed  CAS  Google Scholar 

  7. Gould KL, et al. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: A definitive analysis of causes, consequences, and corrections. J Nucl Med 2007;48:1112-21.

    Article  PubMed  Google Scholar 

  8. Martinez-Moller A, et al. Artifacts from misaligned CT in cardiac perfusion PET/CT studies: Frequency, effects, and potential solutions. J Nucl Med 2007;48:188-93.

    PubMed  Google Scholar 

  9. Schwaiger M, Ziegler S, Nekolla SG. PET/CT: Challenge for nuclear cardiology. J Nucl Med 2005;46:1664-78.

    PubMed  Google Scholar 

  10. McCord ME, et al. Misalignment between PET transmission and emission scans: Its effect on myocardial imaging. J Nucl Med 1992;33:1209-14.

    PubMed  CAS  Google Scholar 

  11. Loghin C, Sdringola S, Gould KL. Common artifacts in PET myocardial perfusion images due to attenuation-emission misregistration: Clinical significance, causes, and solutions. J Nucl Med 2004;45:1029-39.

    PubMed  Google Scholar 

  12. Friedman J, et al. “Upward creep” of the heart: A frequent source of false-positive reversible defects during thallium-201 stress-redistribution SPECT. J Nucl Med 1989;30:1718-22.

    PubMed  CAS  Google Scholar 

  13. Souvatzoglou M, et al. Attenuation correction in cardiac PET/CT with three different CT protocols: A comparison with conventional PET. Eur J Nucl Med Mol Imaging 2007;34:1991-2000.

    Article  PubMed  Google Scholar 

  14. Koepfli P, et al. CT attenuation correction for myocardial perfusion quantification using a PET/CT hybrid scanner. J Nucl Med 2004;45:537-42.

    PubMed  Google Scholar 

  15. Lautamäki R, et al. CT-based attenuation correction in 82Rb-myocardial perfusion PET-CT: Incidence of misalignment and effect on regional tracer distribution. Eur J Nucl Med Mol Imaging 2008;35:305-10.

    Article  PubMed  Google Scholar 

  16. McLeish K, et al. A study of the motion and deformation of the heart due to respiration. IEEE Trans Med Imaging 2002;21:1142-50.

    Article  PubMed  Google Scholar 

  17. Goerres GW, et al. Respiration-induced attenuation artifact at PET/CT: Technical considerations. Radiology 2003;226:906-10.

    Article  PubMed  Google Scholar 

  18. Goerres GW, et al. Accuracy of image coregistration of pulmonary lesions in patients with non-small cell lung cancer using an integrated PET/CT system. J Nucl Med 2002;43:1469-75.

    PubMed  Google Scholar 

  19. Chin BB, et al. PET-CT evaluation of 2-deoxy-2-[18F]fluoro-D-glucose myocardial uptake: Effect of respiratory motion. Mol Imaging Biol 2003;5:57-64.

    Article  PubMed  Google Scholar 

  20. Slomka PJ, et al. Comparison of myocardial perfusion 82Rb PET performed with CT- and transmission CT-based attenuation correction. J Nucl Med 2008;49:1992-8.

    Article  PubMed  Google Scholar 

  21. Le Meunier L, et al. PET/CT imaging: Effect of respiratory motion on apparent myocardial uptake. J Nucl Cardiol 2006;13:821-30.

    Article  PubMed  Google Scholar 

  22. de Juan R, et al. Clinical evaluation of a breathing protocol for PET/CT. Eur Radiol 2004;14:1118-23.

    Article  PubMed  Google Scholar 

  23. Utsunomiya D, et al. Object-specific attenuation correction at SPECT/CT in thorax: Optimization of respiratory protocol for image registration. Radiology 2005;237:662-9.

    Article  PubMed  Google Scholar 

  24. McQuaid SJ, Hutton BF. Sources of attenuation-correction artefacts in cardiac PET/CT and SPECT/CT. Eur J Nucl Med Mol Imaging 2008;35:1117-23.

    Article  PubMed  Google Scholar 

  25. Nehmeh SA, et al. Deep-inspiration breath-hold PET/CT of the thorax. J Nucl Med 2007;48:22-6.

    PubMed  Google Scholar 

  26. Suga K, et al. Automated breath-hold perfusion SPECT/CT fusion images of the lungs. Am J Roentgenol 2007;189:455-63.

    Article  Google Scholar 

  27. Lagerwaard FJ, et al. Multiple “slow” CT scans for incorporating lung tumor mobility in radiotherapy planning. J Radiat Oncol Biol Phys 2001;51:932-7.

    Article  CAS  Google Scholar 

  28. Nye JA, Esteves F, Votaw JR. Minimizing artifacts resulting from respiratory and cardiac motion by optimization of the transmission scan in cardiac PET/CT. Med Phys 2007;34:1901-6.

    Article  PubMed  Google Scholar 

  29. Nye JA, et al. Comparison of low-pitch and respiratory-averaged CT protocols for attenuation correction of cardiac PET studies. Med Phys 2009;36:1618-23.

    Article  PubMed  Google Scholar 

  30. Pan T, et al. Attenuation correction of PET cardiac data with low-dose average CT in PET/CT. Med Phys 2006;33:3931-8.

    Article  PubMed  Google Scholar 

  31. Cook RAH, et al. Respiration-averaged CT for attenuation correction in canine cardiac PET/CT. J Nucl Med 2007;48:811-8.

    Article  PubMed  Google Scholar 

  32. Alessio AM, et al. Cine CT for attenuation correction in cardiac PET/CT. J Nucl Med 2007;48:794-801.

    Article  PubMed  Google Scholar 

  33. Fricke H, et al. A method to remove artifacts in attenuation-corrected myocardial perfusion SPECT introduced by misalignment between emission scan and CT-derived attenuation maps. J Nucl Med 2004;45:1619-25.

    PubMed  Google Scholar 

  34. Goetze S, Wahl RL. Effects of misregistration between SPECT and CT for attenuation corrected myocardial perfusion single photon emission tomography. J Nucl Cardiol 2005;12:S116.

    Article  Google Scholar 

  35. Chen J, et al. Adaptive bayesian iterative transmission reconstruction for attenuation correction in myocardial perfusion imaging with SPECT/slow-rotation low-output CT systems. Int J Biomed Imaging 2007;2007:18709.

    Article  PubMed  Google Scholar 

  36. Esteves FP, et al. Adenosine stress rubidium-82 PET/computed tomography in patients with known and suspected coronary artery disease. Nucl Med Commun 2008;29:674-8.

    Article  PubMed  Google Scholar 

  37. Pan T, et al. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys 2004;31:333-40.

    Article  PubMed  Google Scholar 

  38. Goetze S, et al. Attenuation correction in myocardial perfusion SPECT/CT: Effects of misregistration and value of reregistration. J Nucl Med 2007;48:1090-5.

    Article  PubMed  Google Scholar 

  39. Khurshid K, McGough RJ, Berger K. Automated cardiac motion compensation in PET/CT for accurate reconstruction of PET myocardial perfusion images. Phys Med Biol 2008;53:5705-18.

    Article  PubMed  Google Scholar 

  40. Alessio AM, et al. Attenuation-emission alignment in cardiac PET/CT based on consistency conditions. Med Phys 2010;37:1191-200.

    Article  PubMed  Google Scholar 

  41. Schepis T, et al. Use of coronary calcium score scans from stand-alone multislice computed tomography for attenuation correction of myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 2007;34:11-9.

    Article  PubMed  Google Scholar 

  42. Wells RG, et al. Single-phase CT aligned to gated PET for respiratory motion correction in cardiac PET/CT. J Nucl Med 2010;51:1182-90.

    Article  PubMed  Google Scholar 

  43. Nagel CC, et al. Phased attenuation correction in respiration correlated computed tomography/positron emitted tomography. Med Phys 2006;33:1840-7.

    Article  PubMed  CAS  Google Scholar 

  44. Ponisch F, et al. Attenuation correction of four dimensional (4D) PET using phase-correlated 4D-computed tomography. Phys Med Biol 2008;53:N259-68.

    Article  PubMed  Google Scholar 

  45. Nehmeh SA, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 2004;31:3179-86.

    Article  PubMed  CAS  Google Scholar 

  46. Fayad H, et al. Respiratory synchronized CT image generation from 4D PET acquisitions. In: Nuclear science symposium conference record, 2008. NSS ‘08. IEEE 2008.

  47. Thorndyke B, et al. Reducing respiratory motion artifacts in positron emission tomography through retrospective stacking. Med Phys 2006;33:2632-41.

    Article  PubMed  Google Scholar 

  48. Li T, et al. Model-based image reconstruction for four-dimensional PET. Med Phys 2006;33:1288-98.

    Article  PubMed  Google Scholar 

  49. Dawood M, et al. Respiratory motion correction in 3-D PET data with advanced optical flow algorithms. IEEE Trans Med Imaging 2008;27:1164-75.

    Article  PubMed  Google Scholar 

  50. Livieratos L, et al. Rigid-body transformation of list-mode projection data for respiratory motion correction in cardiac PET. Phys Med Biol 2005;50:3313-22.

    Article  PubMed  CAS  Google Scholar 

  51. Lamare F, et al. List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations. Phys Med Biol 2007;52:5187-204.

    Article  PubMed  CAS  Google Scholar 

  52. Watt A. 3D computer graphics. London: Addison Wesley; 1999.

    Google Scholar 

  53. Namdar M, et al. Integrated PET/CT for the assessment of coronary artery disease: A feasibility study. J Nucl Med 2005;46:930-5.

    PubMed  Google Scholar 

  54. Gaemperli O, et al. Validation of a new cardiac image fusion software for three-dimensional integration of myocardial perfusion SPECT and stand-alone 64-slice CT angiography. Eur J Nucl Med Mol Imaging 2007;34:1097-106.

    Article  PubMed  Google Scholar 

  55. Mattes D, et al. PET-CT image registration in the chest using free-form deformations. IEEE Trans Med Imaging 2003;22:120-8.

    Article  PubMed  Google Scholar 

  56. Camara O, et al. Explicit incorporation of prior anatomical information into a nonrigid registration of thoracic and abdominal CT and 18-FDG whole-body emission PET images. IEEE Trans Med Imaging 2007;26:164-78.

    Article  PubMed  Google Scholar 

  57. Shekhar R, et al. Automated 3-dimensional elastic registration of whole-body PET and CT from separate or combined scanners. J Nucl Med 2005;46:1488-96.

    PubMed  Google Scholar 

  58. Woo J, et al. Geometric feature-based multimodal image registration of contrast-enhanced cardiac CT with gated myocardial perfusion SPECT. Med Phys 2009;36:5467-79.

    Article  PubMed  Google Scholar 

  59. Faber T, et al. 3D fusion of coronary arteries with myocardial perfusion distributions: Clinical validation. J Nucl Med 2004;45:745-53.

    PubMed  Google Scholar 

  60. Slomka P, et al. Motion frozen display and quantification of myocardial perfusion. J Nucl Med 2004;56:1128-34.

    Google Scholar 

  61. Faber T, et al. Second generation fusion of myocardial perfusion distributions with coronary artery data from CT angiography. J Nucl Cardiol 2010;14(4):722 (abstract).

    Google Scholar 

  62. Faber T. et al. Automatic alignments of myocardial perfusion images with contrast cardiac tomography. In: IEEE medical imaging conference 2010. Knoxville, TN.

  63. Flotats A, et al. Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Mol Imaging 2011;38:201-12.

    Article  PubMed  Google Scholar 

  64. Gaemperli O, et al. Cardiac image fusion from stand-alone SPECT and CT: Clinical experience. J Nucl Med 2007;48:696-703.

    Article  PubMed  Google Scholar 

  65. Santana CA, et al. Diagnostic performance of fusion of myocardial perfusion imaging (MPI) and computed tomography coronary angiography. J Nucl Cardiol 2009;16:201-11.

    Article  PubMed  Google Scholar 

  66. Kajander S, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation 2010;122:603-13.

    Article  PubMed  CAS  Google Scholar 

  67. Rispler S, et al. Integrated single-photon emission computed tomography and computed tomography angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol 2007;49:1059-67.

    Article  PubMed  Google Scholar 

  68. Slomka PJ, et al. Quantitative analysis of myocardial perfusion SPECT anatomically guided by coregistered 64-slice coronary CT angiography. J Nucl Med 2009;50:1621-30.

    Article  PubMed  Google Scholar 

  69. Nesterov SV, et al. Myocardial perfusion quantitation with O-15-labelled water PET: High reproducibility of the new cardiac analysis software (Carimas (TM)). Eur J Nucl Med Mol Imaging 2009;36:1594-602.

    Article  PubMed  Google Scholar 

  70. Chen J, et al. Automated quality control of emission-transmission misalignment for attenuation correction in myocardial perfusion imaging with SPECT-CT systems. J Nucl Cardiol 2006;13:43-9.

    Article  PubMed  Google Scholar 

  71. Santana CA, et al. Quantitative 82Rb PET/CT: Development and validation of myocardial perfusion database. J Nucl Med 2007;48:1122-8.

    Article  PubMed  Google Scholar 

  72. Gould KL, et al. Reducing radiation dose in rest-stress cardiac PET/CT by single poststress cine CT for attenuation correction: Quantitative validation. J Nucl Med 2008;49:738-45.

    Article  PubMed  Google Scholar 

  73. Leschka S, et al. Scan length adjustment of CT coronary angiography using the calcium scoring scan: Effect on radiation dose. AJR Am J Roentgenol 2010;194:W272-7.

    Article  PubMed  Google Scholar 

  74. Husmann L, et al. Feasibility of low-dose coronary CT angiography: First experience with prospective ECG-gating. Eur Heart J 2008;29:191-7.

    Article  PubMed  Google Scholar 

  75. Javadi M, et al. Lowering radiation dose for integrated assessment of coronary morphology and physiology: First experience with step-and-shoot CT angiography in a rubidium 82 PET-CT protocol. J Nucl Cardiol 2008;15:783-90.

    PubMed  Google Scholar 

  76. Gosling O, et al. A comparison of radiation doses between state-of-the-art multislice CT coronary angiography with iterative reconstruction, multislice CT coronary angiography with standard filtered back-projection and invasive diagnostic coronary angiography. Heart (British Cardiac Soc) 2010;96:922-6.

    Article  CAS  Google Scholar 

  77. Leipsic J, et al. Adaptive statistical iterative reconstruction: Assessment of image noise and image quality in coronary CT angiography. Am J Roentgenol 2010;195:649-54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathon A. Nye PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nye, J.A., Faber, T.L. Current state of hybrid imaging: attenuation correction and fusion. J. Nucl. Cardiol. 18, 729–740 (2011). https://doi.org/10.1007/s12350-011-9380-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-011-9380-1

Keywords

Navigation