Skip to main content
Log in

Radionuclide imaging of cardiac autonomic innervation

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Cardiac autonomic function plays a crucial role in health and disease, with abnormalities both reflecting the severity of the disease and contributing specifically to clinical deterioration and poor prognosis. Radiotracer analogs of the sympathetic mediator norepinephrine have been investigated extensively, and are at the brink of potential widespread clinical use. The most widely studied SPECT tracer, I-123 metaiodobenzylguanidine (123I-mIBG) has consistently shown a strong, independent ability to risk stratify patients with advanced congestive heart failure. Increased global cardiac uptake appears to have a high negative predictive value in terms of cardiac events, especially death and arrhythmias, and therefore and may have a role in guiding therapy, particularly by helping to better select patients unresponsive to conventional medical therapies who would benefit from device therapies such as an ICD (implantable cardioverter defibrillator), CRT (cardiac resynchronization therapy), LVAD (left ventricular assist device), or cardiac transplantation. Cardiac autonomic imaging with SPECT and PET tracers also shows potential to assess patients following cardiac transplant, those with primary arrhythmic condition, coronary artery disease, diabetes mellitus, and during cardiotoxic chemotherapy. Radiotracer imaging of cardiac autonomic function allows visualization and quantitative measurements of underlying molecular aspects of cardiac disease, and should therefore provide a perspective that other cardiac tests cannot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Carrió I. Cardiac neurotransmission imaging. J Nucl Med 2001;42:1062-76.

    PubMed  Google Scholar 

  2. Zipes DP. Autonomic modulation of cardiac arrhythmias. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: From cell to bedside. 2nd ed. Philadelphia: W.B. Saunders Company; 1995. p. 441-2.

    Google Scholar 

  3. Travin MI. Cardiac neuronal imaging at the edge of clinical application. Cardiol Clin 2009;27:311-27.

    Article  PubMed  Google Scholar 

  4. Flotats A, Carrió I. Cardiac neurotransmission SPECT imaging. J Nucl Cardiol 2004;11:587-602.

    Article  PubMed  Google Scholar 

  5. Verrier RL, Antzelevich C. Autonomic aspects of arrhythmogenesis: The enduring and the new. Curr Opin Cardiol 2004;19:2-11.

    Article  PubMed  Google Scholar 

  6. Bengel FM, Schwaiger M. Assessment of cardiac sympathetic neuronal function using PET imaging. J Nucl Cardiol 2004;11:603-16.

    Article  PubMed  Google Scholar 

  7. Sisson JC, Wieland DM. Radiolabelled meta-iodobenzylguanidine pharmacology: Pharmacology and clinical studies. Am J Physiol Imaging 1986;1:96-103.

    CAS  PubMed  Google Scholar 

  8. Hattori N, Schwaiger M. Metaiodobenzylguanidine scintigraphy of the heart. What have we learned clinically? Eur J Nucl Med 2000;27:1-6.

    Article  CAS  PubMed  Google Scholar 

  9. Kline RC, Swanson DP, Wieland DM, Thrall JH, Gross MD, Pitt B, Beierwaltes WH. Myocardial imaging in man with I-123 Meta-iodobenzylguanidine. J Nucl Med 1981;22:129-32.

    CAS  PubMed  Google Scholar 

  10. Wieland DM, Brown LE, Rogers WL, et al. Myocardial imaging with a radioiodinated norepinephrine storage analog. J Nucl Med 1981;22:22-31.

    CAS  PubMed  Google Scholar 

  11. Luisi AJ, Suzuki G, deKemp R, et al. Regional 11C-hydroxyephedrine retention in hibernating myocardium: Chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med 2005;46:1368-74.

    CAS  PubMed  Google Scholar 

  12. Bozek J, Silva P, Lamoy M, Azure M, Radeke H, Robinson S, Yu M. Heart failure imaging in the rat with LMI1195: A new PET cardiac neuronal imaging agent. Circulation 2009;120:S362.

    Google Scholar 

  13. Yu M, Guaraldi M, Bozek J, Lamoy M, Silva P, Kagan M, Onthank D, Mistry M, Lazewatsky J, Broekema M, Radeke H, Puorhit A, Azure M, Cesati R, Casebier D, Robinson S. LMI1195: A new 18F benzylguanidine analog for PET cardiac sympathetic neuronal imaging. J Am Coll Cardiol 2010;55:A88.

    Article  Google Scholar 

  14. Somsen GA, Verberne HJ, Fleury E, Righetti A. Normal values and within-subject variability of cardiac I-123 MIBG scintigraphy in healthy individuals: Implications for clinical studies. J Nucl Cardiol 2004;11:126-33.

    Article  PubMed  Google Scholar 

  15. Ogita H, Shimonagata T, Fukunami M, et al. Prognostic significance of cardiac 123I metaiodobenzylguanidine imaging for mortality and morbidity in patients with chronic heart failure: A prospective study. Heart 2001;86:656-60.

    Article  CAS  PubMed  Google Scholar 

  16. Patel AD, Iskandrian AE. MIBG imaging. J Nucl Cardiol 2002;9:75-94.

    Article  PubMed  Google Scholar 

  17. Chen JI, Garcia EV, Galt JR, Folks RD, Carrió I. Optimized acquisition and processing protocols for I-123 cardiac SPECT imaging. J Nucl Cardiol 2006;13:251-60.

    PubMed  Google Scholar 

  18. Agostini D, Belin A, Amar MH, et al. Improvement of cardiac neuronal function after carvedilol treatment in dilated cardiomyopathy: A 123I-MIBG scintigraphic study. J Nucl Med 2000;41:845-51.

    CAS  PubMed  Google Scholar 

  19. Yamada T, Shimonagata T, Fukunami M, et al. Comparison of the prognostic value of cardiac iodine-123 metaiodobenzylguanidine imaging and heart rate variability in patients with chronic heart failure. J Am Coll Cardiol 2003;41:231-8.

    Article  PubMed  Google Scholar 

  20. Jacobson AF, Lombard J, Banerjee G, Camici PG. 123I-mIBG scintigraphy to predict risk for adverse cardiac outcomes in heart failure patients: Design of two prospective multicenter international trials ADMIRE-HF study. J Nucl Cardiol 2009;16:113-21.

    Article  PubMed  Google Scholar 

  21. Morozumi T, Kusuoka H, Fukuchi K, Tani A, Uehara T, Matsuda S, Tsujimura E, Ito Y, Hori M, Kamada T, Nishimura T. Myocardial iodine-123-metaiodobenzylguanidine images and autonomic nerve activity in normal subjects. J Nucl Med 1997;38:49-52.

    CAS  PubMed  Google Scholar 

  22. Simões MV, Barthel P, Matsunari I, Nekolla SG, Schömig A, Schwaiger M, Schmidt G, Bengel FM. Presence of sympathetically denervated but viable myocardium and its electrophysiologic correlates after early revascularised, acute myocardial infarction. Eur Heart J 2004;25:551-7.

    Article  PubMed  Google Scholar 

  23. Sasano T, Abraham R, Chang KC, Ashikaga H, Mills KJ, Holt DP, Hilton J, Nekolla SG, Dong J, Lardo AC, Halperin H, Dannals RF, Marbán E, Bengel FM. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol 2008;51:2266-75.

    Article  PubMed  Google Scholar 

  24. Minardo JD, Tuli MM, Mock BH, Weiner RE, Pride HP, Wellmann HN, Zipes DP. Scintigraphic and electrophysiologic evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation 1988;78:1008-19.

    CAS  PubMed  Google Scholar 

  25. Gill JS, Hunter GJ, Gane G, Camm AJ. Heterogeneity of the human myocardial sympathetic innervation: In vivo demonstration by iodine 123-labeled meta-iodobenzylguanidine scintigraphy. Am Heart J 1993;126:390-8.

    Article  CAS  PubMed  Google Scholar 

  26. Tsuchimochi S, Tamaki N, Tadamura E, Kawamoto M, Fujita T, Yonekura Y, Konishi J. Age and gender differences in normal myocardial adrenergic neuronal function evaluated by iodine-123-MIBG imaging. J Nucl Med 1995;36:969-74.

    CAS  PubMed  Google Scholar 

  27. Hubertus Bülow H, Nekolla SG, Schwaiger M, Bengel F. Comparison of the normal distribution of three tracers used for evaluation of the presynaptic sympathetic neuron. J Nucl Cardiol 2003;10:S44.

    Google Scholar 

  28. Lim ET, Lahiri A. Should we be screening for myocardial hibernation in heart failure? J Nucl Cardiol 2004;11:114-7.

    Article  PubMed  Google Scholar 

  29. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michi K, Oates JA, Rahko PS, Silver MA, Stevenson LW, Yancy CW. ACC/AHA 2005 guidelines update for the diagnosis and management of chronic heart failure in the adult: Summary article: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guideline (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol 2005;46:1116-43.

    Article  Google Scholar 

  30. Tang WH, Francis GS. The year in heart failure. J Am Coll Cardiol 2005;46:2125-33.

    Article  PubMed  Google Scholar 

  31. Chen GP, Tabibiazar R, Branch KR, Link JM, Caldwell JH. Cardiac receptor physiology and imaging: An update. J Nucl Cardiol 2005;12:714-30.

    Article  PubMed  Google Scholar 

  32. Merlet P, Benvenuti C, Moyse D, Pouillart F, Dubois-Randé J, Duval A, Loisance D, Castaigne A, Syrota A. Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy. J Nucl Med 1999;40:917-23.

    CAS  PubMed  Google Scholar 

  33. Anastasiou-Nana MI, Terrovitis JV, Athanasoulis T, Karaloizos L, Geramoutsos A, Pappa L, Tsagalou EP, Efentakis S, Nanas JN. Prognostic value of iodine-123-metaiodobenzylguanidine myocardial uptake and heart rate variability in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 2005;96:427-31.

    Article  CAS  PubMed  Google Scholar 

  34. Arimoto T, Takeishi Y, Niizeki T, Nozaki N, Hirono O, Watanabe T, Nitobe J, Tsunoda Y, Suzuki S, Koyama Y, Kitahara T, Okada A, Takahashi K, Kubota I. Cardiac sympathetic denervation and ongoing myocardial damage for prognosis in early stages of heart failure. J Cardiac Fail 2007;13:34-41.

    Article  Google Scholar 

  35. Merlet P, Valette H, Dubois-Randé J, Moyse D, Duboc D, Dove P, Bourguignon MH, Benvenuti C, Duval AM, Agostini D, Loisance D, Castaigne A, Syrota A. Prognostic value of cardiac metaiodobenzylguanidine in patients with heart failure. J Nucl Med 1992;33:471-7.

    CAS  PubMed  Google Scholar 

  36. Nakata T, Miyamoto K, Doi A, Sasso H, Wakabayashi T, Kobayashi H, Tsuchihashi K, Shimamoto K. Cardiac death prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. J Nucl Cardiol 1998;5:579-90.

    Article  CAS  PubMed  Google Scholar 

  37. Wakabayashi T, Nakata T, Hashimoto A, Yuda S, Tsuchihashi K, Travin MI, Shimamoto K. Assessment of underlying etiology and cardiac sympathetic innervation to identify patients at high risk of cardiac death. J Nucl Med 2001;42:1757-67.

    CAS  PubMed  Google Scholar 

  38. Kioka H, Yamada T, Mine T, Morita T, Tsukamoto Y, Tamaki S, Masuda M, Okuda K, Hori M, Fukunami M. Prediction of sudden death in patients with mild-to-moderate chronic heart failure by using cardiac iodine-123 metaiodobenzylguanidine imaging. Heart 2007;93:1213-8.

    Article  PubMed  Google Scholar 

  39. Agostini D, Verberne HJ, Burchert W, Knuuti J, Povince P, Sambuceti G, Unlu M, Estorch M, Banerjee G, Jacobson AF. I-123-mIBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients: Insights from a retrospective European multicenter study. Eur J Nucl Med Mol Imaging 2008;35:535-46.

    Article  PubMed  Google Scholar 

  40. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure: Results of the prospective ADMIRE-HF (AdreView myocardial imaging for risk evaluation in heart failure) study. J Am Coll Cardiol 2010;55. doi:10.1016/j.jacc.2010.01.014.

  41. Travin M, Anathassubramaniam K, Henzlova MJ, Clements IP, Amanullah A, Jacobson AF. Imaging of myocardial sympathetic innervation for prediction of cardiac and all-cause mortality in heart failure: Analysis from the ADMIRE-HF trial. Circulation 2009;120:S350.

    Google Scholar 

  42. Lotze U, Kaepplinger S, Kober A, Richartz BM, Gottschild D, Figulla HR. Recovery of the cardiac adrenergic nervous system after long-term β-blocker therapy in idiopathic dilated cardiomyopathy: Assessment by increase in myocardial 123I-metaiodobenzylguanidine uptake. J Nucl Med 2001;42:49-54.

    CAS  PubMed  Google Scholar 

  43. Gerson MC, Craft LL, McGuire N, Suresh DP, Abraham WT, Wagoner LE. Carvedilol improves left ventricular function in heart failure patients with idiopathic dilated cardiomyopathy and a wide range of sympathetic nervous system function as measured by iodine 123 metaiodobenzylguanidine. J Nucl Cardiol 2002;9:608-15.

    Article  PubMed  Google Scholar 

  44. Merlet P, Pouillart F, Dubois-Randé J, Delahaye N, Fumey R, Castaigne A, Syrota A. Sympathetic nerve alterations assessed with 123I-MIBG in the failing human heart. J Nucl Med 1999;40:224-31.

    CAS  PubMed  Google Scholar 

  45. Cohen-Solal A, Rouzet F, Berdeaux A, Le Guludec D, Abergel E, Syrota A, Merlet P. Effects of carvedilol on myocardial sympathetic innervation in patients with chronic heart failure. J Nucl Med 2005;46:1796-803.

    CAS  PubMed  Google Scholar 

  46. Takeishi Y, Atsumi H, Fujiwara S, Takahashi K, Tomoike H. ACE inhibition reduces cardiac iodine-123-MIBG release in heart failure. J Nucl Med 1997;38:1085-9.

    CAS  PubMed  Google Scholar 

  47. Toyama T, Aihara Y, Iwasaki T, Hasegawa A, Suzuki T, Nagai R, Endo K, Hoshizaki H, Oshima S, Taniguchi K. Cardiac sympathetic activity estimated by 123I-MIBG myocardial imaging in patients with dilated cardiomyopathy after β-blocker or angiotensin-converting enzyme inhibitor therapy. J Nucl Med 1999;40:217-23.

    CAS  PubMed  Google Scholar 

  48. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, Kurabayashi M. Spironolactone improves cardiac sympathetic nerve activity and symptoms in patients with congestive heart failure. J Nucl Med 2002;43:1279-85.

    CAS  PubMed  Google Scholar 

  49. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, Kurabayashi M. Addition of valsartan to an angiotensin-converting enzyme inhibitor improves cardiac sympathetic nerve activity and left ventricular function in patients with congestive heart failure. J Nucl Med 2003;44:884-90.

    CAS  PubMed  Google Scholar 

  50. Toyama T, Hoshizaki H, Seki R, Isobe N, Adachi H, Naito S, Oshima S, Taniguchi K. Efficacy of amiodarone treatment on cardiac symptom, function, and sympathetic nerve activity in patients with dilated cardiomyopathy: Comparison with β-blocker therapy. J Nucl Cardiol 2004;11:134-41.

    Article  PubMed  Google Scholar 

  51. Suwa M, Otake Y, Moriguchi A, Ito T, Hirota Y, Kawamura K, Adachi I, Narabayashi I. Iodine-123 metaiodobenzylguanidine myocardial scintigraphy for prediction of response to β-blocker therapy in patients with dilated cardiomyopathy. Am Heart J 1997;133:353-8.

    Article  CAS  PubMed  Google Scholar 

  52. Choi JY, Lee KH, Hong KP, Kim BT, Seo JD, Lee WR, Lee SH. Iodine-123 MIBG imaging before treatment of heart failure with carvedilol to predict improvement of left ventricular function and exercise capacity. J Nucl Cardiol 2001;8:4-9.

    Article  CAS  PubMed  Google Scholar 

  53. Udelson JE, Shafer CD, Carrió I. Radionuclide imaging in heart failure: Assessing etiology and outcomes and implications for management. J Nucl Cardiol 2002;9:S40-52.

    Article  Google Scholar 

  54. Matsui T, Tsutamoto T, Maeda K, Kusukawa J, Kinoshita M. Prognostic value of repeated 123I-metaiodobenzylguanidine imaging in patients with dilated cardiomyopathy with congestive heart failure before and after optimized treatments—comparison with neurohumoral factors. Circ J 2002;66:537-43.

    Article  PubMed  Google Scholar 

  55. Drakos SG, Athanasoulis T, Malliaras KG, Terrovitis JV, Diakos N, Koudoumas D, Ntalianis AS, Theodoropoulos SP, Yacoub MH, Nanas JN. Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. J Am Coll Cardiol Img 2010;3:64-70.

    Google Scholar 

  56. D’Orio Nishioka SA, Filho MM, Soares Brandāo SC, Clementina Giorgi M, Vieira MLC, Costa R, Mathias W, Cláudio Meneghetti J. Cardiac sympathetic activity pre and post resynchronization therapy evaluated by 123I-MIBG myocardial scintigraphy. J Nucl Cardiol 2007;14:852-9.

    Article  Google Scholar 

  57. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res 2004;95:754-63.

    Article  CAS  PubMed  Google Scholar 

  58. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable defibrillator for congestive heart failure. N Engl J Med 2005;352:225-37.

    Article  CAS  PubMed  Google Scholar 

  59. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, Konstam MA, Mancini DM, Rahko PS, Silver MA, Stevenson LW, Yancy CW. Writing on behalf of the 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure ion the Adult Writing Committee. 2009 focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: A report of the American College of Cardiology/American heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2009;53:1343-82.

    Article  Google Scholar 

  60. Fisher JD, Hector HE. Relative and absolute benefits: Main results should be reported in absolute terms. PACE 2007;30:935-7.

    PubMed  Google Scholar 

  61. Passman R, Kadish A. Sudden death prevention with implantable devices. Circulation 2007;116:561-71.

    Article  PubMed  Google Scholar 

  62. Desai A, Fang J, Maisel W, Baughman K. Implantable defibrillators for the prevention of mortality in patients with nonischemic cardiomyopathy: A meta-analysis of randomized controlled rates. JAMA 2004;292:2874-9.

    Article  CAS  PubMed  Google Scholar 

  63. Buxton AE, Lee KL, Hafley GE, Pires LA, Fisher JD, Gold MR, Josephson ME, Lehmann MH. Limitations of ejection fraction for prediction of sudden death risk in patients with coronary artery disease. J Am Coll Cardiol 2007;50:1150-7.

    Article  PubMed  Google Scholar 

  64. Goldenberg I, Vyas AK, Hall WJ, Moss AJ, Wang H, He H, Zareba W, McNitt S, Andrews ML. Risk stratification for primary implantation of a cardioverter-defibrillator in patients with ischemic left ventricular dysfunction. J Am Coll Cardiol 2008;51:288-96.

    Article  PubMed  Google Scholar 

  65. Passman R, Kadish A. Shouldn’t everyone have an implantable cardioverter-defibrillator? Circulation 2009;120:2166-7.

    Article  PubMed  Google Scholar 

  66. Sanders GD, Hlatky MA, Owens DK. Cost-effectiveness of implantable cardioverter-defibrillators. N Engl J Med 2005;353:1471-80.

    Article  CAS  PubMed  Google Scholar 

  67. Barron HV, Lesh MD. Autonomic nervous system and sudden cardiac death. J Am Coll Cardiol 1996;27:1053-60.

    Article  CAS  PubMed  Google Scholar 

  68. Stanton MS, Tuli MM, Radtke NL, Heger JJ, Miles WM, Mock BH, Burt RW, Wellman HN, Zipes DP. Regional sympathetic denervation after MI in humans detected noninvasively using I-123-MIBG. J Am Coll Cardiol 1989;14:1519-26.

    Article  CAS  PubMed  Google Scholar 

  69. McGhie AI, Corbett JR, Akers MS, Kulkarni P, Sills MN, Kremers M, Buja M, Durant-Reville M, Parkey RW, Willerson JT. Regional cardiac adrenergic function using I-123 MIBG SPECT imaging after acute myocardial infarction. Am J Cardiol 1991;67:236-42.

    Article  CAS  PubMed  Google Scholar 

  70. Arora R, Ferrick KJ, Nakata T, Kaplan RC, Rozengarten M, Latif F, Ng K, Marcano V, Heller S, Fisher JD, Travin MI. I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol 2003;10:121-31.

    Article  PubMed  Google Scholar 

  71. Nagahara D, Nakata T, Hashimoto A, Wakabayashi T, Kyuma M, Noda R, Shimoshige S, Uno K, Tsuchihashi K, Shimamoto K. Predicting the need for an implantable cardioverter defibrillator using cardiac metaiodobenzylguanidine activity together with plasma natriuretic peptide concentration or left ventricular function. J Nucl Med 2008;49:225-33.

    Article  PubMed  Google Scholar 

  72. Senior R, Agostini D, Travin M, Caldwell J, Gerson MC, Jacobson AF. Imaging of myocardial sympathetic innervation for prediction of arrhythmic events in heart failure patients: Insights from the ADMIRE-HF trial. Circulation 2009;120:S349.

    Google Scholar 

  73. Boogers MM, Willem CJ, Henneman MM, Van Bommel RJ, Boersma E, Dibbets-Schneider P, et al. Cardiac sympathetic denervation assessed with 123-Iodine Metaiodobenzylguanidine imaging predicts ventricular arrhythmias in patients with implantable cardioverter-defibrillator. Circulation 2009;120:S348-9.

    Google Scholar 

  74. Tamaki S, Yamada T, Okuyama Y, Morita T, Sanada S, Tsukamoto Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: Results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol 2009;53:426-35.

    Article  CAS  PubMed  Google Scholar 

  75. Mitrani RD, Klein LS, Miles WM, Hackett FK, Burt RW, Wellman HN, Zipes DP. Regional cardiac sympathetic denervation in patients with ventricular tachycardia in the absence of coronary artery disease. J Am Coll Cardiol 1993;22:1344-53.

    Article  CAS  PubMed  Google Scholar 

  76. Gill JS, Hunter GJ, Gane J, Ward DE, Camm AJ. Asymmetry of cardiac [123I] meta-iodobenzylguanidine scans in patients with ventricular tachycardia and a “clinically normal” heart. Br Heart J 1993;69:6-13.

    Article  CAS  PubMed  Google Scholar 

  77. Schäfers M, Lerch H, Wichter T, Rhodes CG, Lammertsma AA, Borggrefe M, Hermansen F, Schober O, Breithardt G, Camici PG. Cardiac sympathetic innervation in patients with idiopathic right ventricular outflow tract tachycardia. J Am Coll Cardiol 1198;32:181-6.

    Article  Google Scholar 

  78. Wichter T, Matheja P, Eckardt L, Kies P, Schäfers K, Schulze-Bahr E, Haverkamp W, Borggrefe M, Schober O, Breithardt G, Schäfers M. Cardiac autonomic dysfunction in Brugada syndrome. Circulation 2002;105:702-6.

    Article  PubMed  Google Scholar 

  79. Wilson RF, Christensen BV, Olivari MT, Simon Am White CW, Laxson DD. Evidence for structural sympathetic reinnervation after orthotopic cardiac transplantation in humans. Circulation 1991;38:1210-20.

    Google Scholar 

  80. Hunt S. Reinnervation of the transplanted heart—why is it important? N Engl J Med 2001;345:762-4.

    Article  CAS  PubMed  Google Scholar 

  81. Schwaiger M, Hutchins GD, Kalff V, Rosenspire K, Haka MS, Mallette S, Deeb GM, Abrams GD, Wieland D. Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. J Clin Invest 1991;87:1681-90.

    Article  CAS  PubMed  Google Scholar 

  82. Bengel FM, Ueberfuhr P, Ziegler SI, Nekolla S, Reichart B, Schwaiger M. Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation 1999;99:1866-71.

    CAS  PubMed  Google Scholar 

  83. Bengel FM, Ueberfuhr P, Schiepel N, Nekolla SG, Reichart B, Schwaiger M. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med 2001;345:731-8.

    Article  CAS  PubMed  Google Scholar 

  84. Watanabe K, Takahashi T, Miyajima S, Hirokawa Y, Tanabe N, Kato K, Kodama M, Aizawa Y, Tazawa S, Inoue M. Myocardial sympathetic denervation, fatty acid metabolism, and left ventricular wall motion in vasospastic angina. J Nucl Med 2002;43:1476-81.

    CAS  PubMed  Google Scholar 

  85. Tomoda H, Yoshioka K, Shiina Y, Tagawa R, Ide M, Suzuki Y. Regional sympathetic denervation detected by iodine 123 metaiodobenzylguanidine in non-Q-wave myocardial infarction and unstable angina. Am Heart J 1994;128:452-8.

    Article  CAS  PubMed  Google Scholar 

  86. Stevens MJ, Raffel DM, Allman KC, Dayanikli F, Ficaro E, Sandford T, Wieland DM, Pfeifer MA, Schwaiger M. Cardiac sympathetic dysinnervationin diabetes. Implications for enhanced cardiovascular risk. Circulation 1998;98:961-8.

    CAS  PubMed  Google Scholar 

  87. Nagamachi S, Fujita S, Nishii R, Futami S, Tamura S, Mizuta M, Nakazato M, Kurose T, Wakamatsu H. Prognostic value of cardiac I-123 metaiodobenzylguanidine imaging in patients with non-insulin-dependent diabetes mellitus. J Nucl Cardiol 2006;13:34-42.

    Article  PubMed  Google Scholar 

  88. Wakasugi S, Fischman AJ, Babich JW, Aretz HT, Callahan RJ, Nakaki M, Wilkinson R, Strauss HW. Metaiodobenzylguanidine: Evaluation of its potential as a tracer for monitoring doxorubicin cardiomyopathy. J Nucl Med 1993;34:1282-6.

    Google Scholar 

  89. Olmos RA, ten Bokkel Huinink WW, ten Hoeve RFA, Van Tinteren H, Bruning PF, Van Vlies B, Hoefnagel CA. Adrenergic derangement by [123I]Metaiodobenzylguanidine scintigraphy. Eur J Cancer 1995;31A:26-31.

    Article  Google Scholar 

  90. Carrió I, Estorch M, Berná L, López-Pousa J, Tabernero J, Torres G. Indium-111-antimyosin and iodine-123-MIBG studies in early assessment of doxorubicin cardiotoxicity. J Nucl Med 1995;36:2024-49.

    Google Scholar 

  91. Lautamäki R, Tipre D, Bengel FM. Cardiac sympathetic neuronal imaging using PET. Eur J Nucl Med Mol Imaging 2007;34:S74-85.

    Article  PubMed  CAS  Google Scholar 

  92. Caldwell JH, Link JM, Levy WC, Poole JE, Stratton JR. Evidence for pre- to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nucl Med 2008;49:234-41.

    Article  PubMed  Google Scholar 

  93. Arora R, Ng J, Ulphani J, Mylonas I, Subacius H, Shade G, Gordon D, Morris A, He X, Lu Y, Belin R, Goldberger JJ, Kadish AH. Unique autonomic profile of the pulmonary veins and posterior left atrium. J Am Coll Cardiol 2007;49:1340-8.

    Article  PubMed  Google Scholar 

  94. Lellouche N, Buch E, Celigoj A, Siegerman C, Cesario D, De Diego C, Mahajan A, Boyle NG, Wiener I, Garfinkel A, Shivkumar K. Functional characterization of atrial electrograms in sinus rhythm delineates sites of parasympathetic innervation in patients with paroxysmal atrial fibrillation. J Am Coll Cardiol 2007;50:1324-31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark I. Travin MD, FASNC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, S.Y., Travin, M.I. Radionuclide imaging of cardiac autonomic innervation. J. Nucl. Cardiol. 17, 655–666 (2010). https://doi.org/10.1007/s12350-010-9239-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-010-9239-x

Keywords

Navigation