Skip to main content
Log in

An open-source framework of neural networks for diagnosis of coronary artery disease from myocardial perfusion SPECT

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

The purpose of this study is to develop and analyze an open-source artificial intelligence program built on artificial neural networks that can participate in and support the decision making of nuclear medicine physicians in detecting coronary artery disease from myocardial perfusion SPECT (MPS).

Methods and Results

Two hundred and forty-three patients, who had MPS and coronary angiography within three months, were selected to train neural networks. Six nuclear medicine residents, one experienced nuclear medicine physician, and neural networks evaluated images of 65 patients for presence of coronary artery stenosis. Area under the curve (AUC) of receiver operating characteristics analysis for networks and expert was .74 and .84, respectively. The AUC of the other physicians ranged from .67 to .80. There were no significant differences between expert, neural networks, and standard quantitative values, summed stress score and total stress defect extent.

Conclusions

The open-source neural networks developed in this study may provide a framework for further testing, development, and integration of artificial intelligence into nuclear cardiology environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cross SS, Harrison RF, Kennedy RL. Introduction to neural networks. Lancet 1995;346:1075-9.

    Article  CAS  PubMed  Google Scholar 

  2. Awai K, Murao K, Ozawa A, Nakayama Y, Nakaura T, Liu D, et al. Pulmonary nodules: Estimation of malignancy at thin-section helical CT—effect of computer-aided diagnosis on performance of radiologists. Radiology 2006;239:276-84.

    Article  PubMed  Google Scholar 

  3. Petrick N, Haider M, Summers RM, Yeshwant SC, Brown L, Iuliano EM, et al. CT colonography with computer-aided detection as a second reader: Observer performance study. Radiology 2008;246:148-56.

    Article  PubMed  Google Scholar 

  4. Lindahl D, Lanke J, Lundin A, Palmer J, Edenbrandt L. Improved classifications of myocardial bull’s-eye scintigrams with computer-based decision support system. J Nucl Med 1999;40:96-101.

    CAS  PubMed  Google Scholar 

  5. Ohlsson M. WeAidU-a decision support system for myocardial perfusion images using artificial neural networks. Artif Intell Med 2004;30:49-60.

    Article  PubMed  Google Scholar 

  6. Garcia EV, Cooke CD, Folks RD, Santana CA, Krawczynska EG, De Braal L, et al. Diagnostic performance of an expert system for the interpretation of myocardial perfusion SPECT studies. J Nucl Med 2001;42:1185-91.

    CAS  PubMed  Google Scholar 

  7. Frigo M, Johnson SG. The design and implementation of FFTW3. Proc IEEE 2005;93:216-31.

    Article  Google Scholar 

  8. Ingo Mierswa MS, Wurst M. YALE: Rapid prototyping for complex data mining tasks. In: 12th ACM SIGKDD International PONZETTO & STRUBE Conference on Knowledge Discovery and Data Mining; 2006.

  9. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten I. The WEKA data mining software. ACM SIGKDD Explor Newslett (ACM Digital Library) 2009;11:10-8.

    Article  Google Scholar 

  10. Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983;148:839-43.

    CAS  PubMed  Google Scholar 

  11. Germano G, Kavanagh PB, Waechter P, Areeda J, Van Kriekinge S, Sharir T, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. I: Technical principles and reproducibility. J Nucl Med 2000;41:712-9.

    CAS  PubMed  Google Scholar 

  12. Slomka PJ, Nishina H, Berman DS, Akincioglu C, Abidov A, Friedman JD, et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol 2005;12:66-77.

    Article  PubMed  Google Scholar 

  13. Garcia EV, Faber TL, Cooke CD, Folks RD, Chen J, Santana C. The increasing role of quantification in clinical nuclear cardiology: The Emory approach. J Nucl Cardiol 2007;14:420-32.

    Article  PubMed  Google Scholar 

  14. Garcia EV, DePuey EG, DePasquale EE. Quantitative planar and tomographic thallium-201 myocardial perfusion imaging. Cardiovasc Intervent Radiol 1987;10:374-83.

    Article  CAS  PubMed  Google Scholar 

  15. Ficaro EP, Kritzman JN, Corbett JR. Development and clinical validation of normal Tc-99m sestamibi database: Comparison of 3D-MSPECT to CEqual. J Nucl Med 1999;40:506.

    Google Scholar 

  16. Kritzman JN, Ficaro EF, Liu YH, Wackers FJT, Corbett JR. Evaluation of 3-D MSPECT for quantification of Tc-99m sestamibi defect size. J Nucl Med 1999;40:817.

    Google Scholar 

  17. Wolak A, Slomka PJ, Fish MB, Lorenzo S, Acampa W, Berman DS, et al. Quantitative myocardial-perfusion SPECT: Comparison of three state-of-the-art software packages. J Nucl Cardiol 2008;15:27-34.

    Article  PubMed  Google Scholar 

  18. Fujita H, Katafuchi T, Uehara T, Nishimura T. Application of artificial neural network to computer-aided diagnosis of coronary artery disease in myocardial SPECT bull’s-eye images. J Nucl Med 1992;33:272-6.

    CAS  PubMed  Google Scholar 

  19. Porenta G, Dorffner G, Kundrat S, Petta P, Duitschedlmayer J, Sochor H. Automated interpretation of planar thallium-201-dipyridamole stress-redistribution scintigrams using artificial neural networks. J Nucl Med 1994;35:2041-7.

    CAS  PubMed  Google Scholar 

  20. Toft J, Hesse B, Rabol A, Carstensen S, Ali S. Myocardial sestamibi single-photon emission tomography: Variations in reference values with gender, age and rest versus stress? Eur J Nucl Med 1997;24:409-14.

    CAS  PubMed  Google Scholar 

  21. Lindahl D, Toft J, Hesse B, Palmer J, Ali S, Lundin A, et al. Scandinavian test of artificial neural network for classification of myocardial perfusion images. Clin Physiol 2000;20:253-61.

    Article  CAS  PubMed  Google Scholar 

  22. Scott JA, Aziz K, Yasuda T, Gewirtz H. Integration of clinical and imaging data to predict the presence of coronary artery disease with the use of neural networks. Coron Artery Dis 2004;15:427-34.

    Article  PubMed  Google Scholar 

  23. Tagil K, Underwood SR, Davies G, Latus KA, Ohlsson M, Gotborg CW, et al. Patient gender and radiopharmaceutical tracer is of minor importance for the interpretation of myocardial perfusion images using an artificial neural network. Clin Physiol Funct Imaging 2006;26:146-50.

    Article  PubMed  Google Scholar 

  24. Haraldsson H, Ohlsson M, Edenbrandt L. Value of exercise data for the interpretation of myocardial perfusion SPECT. J Nucl Cardiol 2002;9:169-73.

    Article  PubMed  Google Scholar 

  25. Allison JS, Heo JY, Iskandrian AE. Artificial neural network modeling of stress single-photon emission computed tomographic imaging for detecting extensive coronary artery disease. Am J Cardiol 2005;95:178-81.

    Article  PubMed  Google Scholar 

  26. Lindahl D, Palmer J, Ohlsson M, Peterson C, Lundin A, Edenbrandt L. Automated interpretation of myocardial SPECT perfusion images using artificial neural networks. J Nucl Med 1997;38:1870-5.

    CAS  PubMed  Google Scholar 

  27. Lomsky M, Gjertsson P, Johansson L, Richter J, Ohlsson M, Tout D, et al. Evaluation of a decision support system for interpretation of myocardial perfusion gated SPECT. Eur J Nucl Med Mol Imaging 2008;35:1523-9.

    Article  PubMed  Google Scholar 

  28. Kurgan LA, Cios KJ, Tadeusiewicz R, Ogiela M, Goodenday LS. Knowledge discovery approach to automated cardiac SPECT diagnosis. Artif Intell Med 2001;23:149-69.

    Article  CAS  PubMed  Google Scholar 

  29. Khorsand A, Haddad M, Graf S, Moertl D, Sochor H, Porenta G. Automated assessment of dipyridamole 201Tl myocardial SPECT perfusion scintigraphy by case-based reasoning. J Nucl Med 2001;42:189-93.

    CAS  PubMed  Google Scholar 

  30. Cios KJ, Teresinska A, Konieczna S, Potocka J, Sharma S. A knowledge discovery approach to diagnosing myocardial perfusion. IEEE Eng Med Biol Mag 2000;19:17-25.

    Article  CAS  PubMed  Google Scholar 

  31. Haddad M, Adlassnig KP, Porenta G. Feasibility analysis of a case-based reasoning system for automated detection of coronary heart disease from myocardial scintigrams. Artif Intell Med 1997;9:61-78.

    Article  CAS  PubMed  Google Scholar 

  32. Khorsand A, Graf S, Sochor H, Schuster E, Porenta G. Automated assessment of myocardial SPECT perfusion scintigraphy: A comparison of different approaches of case-based reasoning. Artif Intell Med 2007;40:103-13.

    Article  PubMed  Google Scholar 

  33. Ezquerra N, Mullick R, Cooke CD, Krawczynska EG, Garcia EV. PERFEX—an expert-system for interpreting 3D myocardial perfusion. Expert Syst Appl 1993;6:459-68.

    Article  Google Scholar 

  34. Robert MB, Yehuda K. Lessons from the Netflix prize challenge. SIGKDD Explor Newslett 2007;9:75-9.

    Article  Google Scholar 

  35. Maddahi J, Van Train K, Prigent F, Garcia EV, Friedman J, Ostrzega E, et al. Quantitative single photon emission computed thallium-201 tomography for detection and localization of coronary artery disease: Optimization and prospective validation of a new technique. J Am Coll Cardiol 1989;14:1689-99.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank residents of the Department of Nuclear Medicine, Dr Unal, Dr Cakir, Dr Sucak, Dr Doksoz, and Dr Sahiner who have participated in the experiments of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levent A. Guner MD, MS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guner, L.A., Karabacak, N.I., Akdemir, O.U. et al. An open-source framework of neural networks for diagnosis of coronary artery disease from myocardial perfusion SPECT. J. Nucl. Cardiol. 17, 405–413 (2010). https://doi.org/10.1007/s12350-010-9207-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-010-9207-5

Keywords

Navigation