Skip to main content

Advertisement

Log in

Left ventricular mass from gated SPECT myocardial perfusion imaging: Comparison with cardiac computed tomography

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Increased left ventricular mass (LVM) has been correlated with adverse cardiac events, such as sudden cardiac death. However, LVM quantitation with widely utilized gated SPECT myocardial perfusion imaging (MPI) software, has little validation and clinical application. Thus, we compared LVM from two commonly employed gated SPECT packages [4D-MSPECT® (4DM) and Quantitative Perfusion SPECT® (QPS)] with the 3-dimensional reference standard, CT angiography (CTA).

Methods

Comparisons were made in 56 patients (mean age 61.4 ± 14.6; 32% female) referred for dual-isotope or low-dose/high-dose Tc-99m-tetrofosmin rest/stress MPI and cardiac CTA (mean 1.5 ±4.5 months apart). LVM measurement was performed for both CTA and MPI by two independent observers blinded to clinical information.

Results

Correlation with CTA was best for post-stress MPI than at rest; thus, post-stress values are reported. Values obtained with each of the techniques were very highly reproducible (interobserver correlation r = 0.99 for each technique). The mean LVM values were 142 g by CTA, 145 g by 4DM, and 135 g by QPS (P = NS for CTA vs SPECT, but P < .001 for 4DM vs QPS). There was moderately good correlation between CTA and SPECT LVM data (r = 0.74 and 0.72 for 4DM and QPS, respectively; both P < .001). However, on Bland-Altman analysis there was significant overestimation of lower values and underestimation of higher CT LVM values by both QPS and 4DM (both r = 0.68 and 0.69, P < .001). The limits of agreement relative to CT LVM were wide (−52.1 g to 64.1 g for QPS; and −60.0 g to 53.5 g for 4DM).

Conclusions

SPECT and CTA give reproducible measures of LVM. Using CTA as the reference standard, the mean SPECT LVM values are similar, but lower values are overestimated and higher values are underestimated. Thus, the SPECT values are not substitutable for CTA without mathematical correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Haider AW, Larson MG, Benjamin EJ, Levy D. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol 1998;32:1454-9.

    Article  PubMed  CAS  Google Scholar 

  2. Kannel WB, Levy D, Cupples LA. Left ventricular hypertrophy and risk of cardiac failure: Insights from the Framingham Study. J Cardiovasc Pharmacol 1987;10:S135-40.

    PubMed  Google Scholar 

  3. Kannel WB, Abbott RD. A prognostic comparison of asymptomatic left ventricular hypertrophy and unrecognized myocardial infarction: The Framingham Study. Am Heart J 1986;111:391-7.

    Article  PubMed  CAS  Google Scholar 

  4. Bluemke DA, Kronmal RA, Lima JA, et al. The relationship of left ventricular mass and geometry to incident cardiovascular events: The MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol 2008;52:2148-55.

    Article  PubMed  Google Scholar 

  5. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990;322:1561-6.

    PubMed  CAS  Google Scholar 

  6. Maruyama K, Hasegawa S, Nakatani D, et al. Left ventricular mass index measured by quantitative gated myocardial SPECT with 99mTc-tetrofosmin: A comparison with echocardiography. Ann Nucl Med 2003;17:31-9.

    Article  PubMed  Google Scholar 

  7. Faber TL, Cooke CD, Folks RD, et al. Left ventricular function and perfusion from gated SPECT perfusion images: An integrated method. J Nucl Med 1999;40:650-9.

    PubMed  CAS  Google Scholar 

  8. Yamaoka O, Yabe T, Okada M, et al. Evaluation of left ventricular mass: Comparison of ultrafast computed tomography, magnetic resonance imaging, and contrast left ventriculography. Am Heart J 1993;126:1372-9.

    Article  PubMed  CAS  Google Scholar 

  9. Schlosser T, Mohrs OK, Magedanz A, Voigtlander T, Schmermund A, Barkhausen J. Assessment of left ventricular function and mass in patients undergoing computed tomography (CT) coronary angiography using 64-detector-row CT: Comparison to magnetic resonance imaging. Acta Radiol 2007;48:30-5.

    Article  PubMed  CAS  Google Scholar 

  10. Diethelm L, Simonson JS, Dery R, Gould RG, Schiller NB, Lipton MJ. Determination of left ventricular mass with ultrafast CT and two-dimensional echocardiography. Radiology 1989;171:213-7.

    PubMed  CAS  Google Scholar 

  11. Germano G, Kavanagh PB, Chen J, et al. Operator-less processing of myocardial perfusion SPECT studies. J Nucl Med 1995;36:2127-32.

    PubMed  CAS  Google Scholar 

  12. Nakajima K, Higuchi T, Taki J, Kawano M, Tonami N. Accuracy of ventricular volume and ejection fraction measured by gated myocardial SPECT: Comparison of 4 software programs. J Nucl Med 2001;42:1571-8.

    PubMed  CAS  Google Scholar 

  13. Schaefer WM, Lipke CS, Nowak B, et al. Validation of QGS and 4D-MSPECT for quantification of left ventricular volumes and ejection fraction from gated 18F-FDG PET: Comparison with cardiac MRI. J Nucl Med 2004;45:74-9.

    PubMed  Google Scholar 

  14. Raman SV, Shah M, McCarthy B, Garcia A, Ferketich AK. Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J 2006;151:736-44.

    Article  PubMed  Google Scholar 

  15. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-10.

    PubMed  CAS  Google Scholar 

  16. Myerson SG, Bellenger NG, Pennell DJ. Assessment of left ventricular mass by cardiovascular magnetic resonance. Hypertension 2002;39:750-5.

    Article  PubMed  CAS  Google Scholar 

  17. Myerson SG, Montgomery HE, World MJ, Pennell DJ. Left ventricular mass: Reliability of M-mode and 2-dimensional echocardiographic formulas. [see comment]. Hypertension 2002;40:673-8.

    Article  PubMed  CAS  Google Scholar 

  18. Bastarrika G, Arraiza M, De Cecco CN, Mastrobuoni S, Ubilla M, Rabago G. Quantification of left ventricular function and mass in heart transplant recipients using dual-source CT and MRI: Initial clinical experience. Eur Radiol 2008;18:1784-90.

    Article  PubMed  Google Scholar 

  19. Yamamuro M, Tadamura E, Kubo S, et al. Cardiac functional analysis with multi-detector row CT and segmental reconstruction algorithm: Comparison with echocardiography, SPECT, and MR imaging. Radiology 2005;234:381-90.

    Article  PubMed  Google Scholar 

  20. Persson E, Carlsson M, Palmer J, Pahlm O, Arheden H. Evaluation of left ventricular volumes and ejection fraction by automated gated myocardial SPECT versus cardiovascular magnetic resonance. Clin Physiol Funct Imaging 2005;25:135-41.

    Article  PubMed  Google Scholar 

  21. Soneson H, Ubachs JF, Ugander M, Arheden H, Heiberg E. An improved method for automatic segmentation of the left ventricle in myocardial perfusion SPECT. J Nucl Med 2009;50:205-13.

    Article  PubMed  Google Scholar 

  22. Akinboboye O, Germano G, Idris O, et al. Left ventricular mass measured by myocardial perfusion gated SPECT. Relation to three-dimensional echocardiography. Clin Nucl Med 2003;28:392-7.

    Article  PubMed  Google Scholar 

  23. Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63.

    Article  PubMed  Google Scholar 

  24. DePuey EG, Nichols K, Dobrinsky C. Left ventricular ejection fraction assessed from gated technetium-99m-sestamibi SPECT. J Nucl Med 1993;34:1871-6.

    PubMed  CAS  Google Scholar 

  25. Faber TL, Cooke CD, Peifer JW, et al. Three-dimensional displays of left ventricular epicardial surface from standard cardiac SPECT perfusion quantification techniques. J Nucl Med 1995;36:697-703.

    PubMed  CAS  Google Scholar 

  26. Everaert H, Bossuyt A, Franken PR. Left ventricular ejection fraction and volumes from gated single photon emission tomographic myocardial perfusion images: Comparison between two algorithms working in three-dimensional space. J Nucl Cardiol 1997;4:472-6.

    Article  PubMed  CAS  Google Scholar 

  27. Schepis T, Gaemperli O, Koepfli P, et al. Comparison of 64-slice CT with gated SPECT for evaluation of left ventricular function. J Nucl Med 2006;47:1288-94.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim A. Williams MD, FASNC, FACC, FAHA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okwuosa, T.M., Hampole, C.V., Ali, J. et al. Left ventricular mass from gated SPECT myocardial perfusion imaging: Comparison with cardiac computed tomography. J. Nucl. Cardiol. 16, 775–783 (2009). https://doi.org/10.1007/s12350-009-9131-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-009-9131-8

Keywords

Navigation