Skip to main content

Advertisement

Log in

Green tea: protective action against oxidative damage induced by xenobiotics

  • Review
  • Published:
Mediterranean Journal of Nutrition and Metabolism

Abstract

The indiscriminate usage of synthetic chemicals and pesticides has led to a widespread contamination of land, water and air with harmful xenobiotics. The exposure to these toxicants results in severe health effects on organisms. Also, some natural foods contain harmless chemical species (nitrate), which however become toxic on certain conditions. Hence it is pertinent to focus attention on commonly consumed plant food materials, which can neutralize the toxicity damage caused by environmental agents. One of the most important sources of antioxidants is green tea. This review focuses on the mechanisms of oxidative damage caused by different xenobiotics and the defensive action of green tea in mitigating the damage. It is concluded that tea polyphenols, catechins and flavonoids scavenge reactive oxygen species and render a protective effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stavric B (1994) Role of chemopreventers in human diet. Clin Biochem 27:319–332

    Article  CAS  Google Scholar 

  2. Hasegawa R, Chujo T, Sai-Kato K, Umemura T, Tanimura A, Kurokawa Y (1995) Preventive effects of green tea against liver oxidative DNA damage and hepatotoxicity in rats treated with 2-nitropropane. Food Chem Toxicol 33(11):961–970

    Article  CAS  Google Scholar 

  3. Vinson JA, Dabbagh YA (1998) Tea phenols: antioxidant effectiveness of teas, tea components, tea fractions and their binding with lipoproteins. Nutr Res 18(6):1067–1075

    Article  CAS  Google Scholar 

  4. Gupta S, Saha B, Giri AK (2002) Comparative antimutagenic and anticlastogenic effects of green tea and black tea: a review. Mutat Res 512:37–65

    Article  CAS  Google Scholar 

  5. Harbowy ME, Balentine DA (1997) Tea chemistry. Crit RevPlant Sci 16:415–480

    CAS  Google Scholar 

  6. Ahmad N, Katiyar SK, Mukhtar H (1998) Cancer chemoprevention by tea polyphenols. In: Ionnides C (ed) Nutrition and chemical toxicity. Wiley, West Sussex, UK, pp 301–343

    Google Scholar 

  7. Katiyar SK, Mukhtar H (1996) Tea in chemoprevention of cancer: epidemiologic and experimental studies. Int J Oncol 8:221–228

    CAS  Google Scholar 

  8. Stoner GD, Mukhtar H (1995) Polyphenols as cancer chemopreventive agents. J Cell Biochem Suppl 22:169–180

    Article  CAS  Google Scholar 

  9. Balentine DA (1991) Manufacturing and chemistry of tea. In: Ho CT, Lee CY, Huang MT (eds) Phenolic compounds in food and their effects on health I. American Chemical Society, Washington, DC, pp 34–50

    Google Scholar 

  10. Hollman PCH, Feskens EJ, Katan MB (1999) Tea flavonols in cardiovascular disease and cancer epidemiology. Proc Soc Exp Biol Med 220:198–202

    Article  CAS  Google Scholar 

  11. Weisburger JH, Chung FL (2002) Mechanisms of chronic disease causation by nutritional factors and tobacco products and their prevention by tea polyphenols. Food Chem Toxicol 40:1145–1154

    Article  CAS  Google Scholar 

  12. Gyamlani GG, Parikh CR (2002) Acetaminophen toxicity: suicidal vs accidental. Crit Care 6:155–159

    Article  Google Scholar 

  13. Litowitz TL, Holm KC, Clancy C, Schmitz BF, Clark LR, Oderda GM (1999) 1992 Annual report of the American Association of the Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 17:435–487

    Article  Google Scholar 

  14. Oz HS, Chen TS (2008) Green-tea polyphenols downregulate cyclooxygenase and Bcl-2 activity in acetaminophen-induced hepatotoxicity. Dig Dis Sci 53(11):2980–2988

    Article  CAS  Google Scholar 

  15. Hoberman HD, San George RC (1988) Reaction of tobacco smoke aldehydes with human hemoglobin. J Biochem Toxicol 3:105–119

    Article  CAS  Google Scholar 

  16. Esterbauer H, Zollner H, Schaur RJ (1990) Aldehydes formed by lipid peroxidation: mechanisms of formation, occurrence and determination. In: Vigo C (ed) Lipid oxidation. CRC Press, Boca Raton, pp 239–283

    Google Scholar 

  17. Gerrard AJ, Brown KP (2002) Protein cross-linking in food: mechanisms, consequences, applications. Int Congr Ser 1245:211–215

    Article  CAS  Google Scholar 

  18. Alghazeer R, Saeed S, Howell NK (2008) Aldehyde formation in frozen mackerel (Scomber scombrus) in the presence and absence of instant green tea. Food Chem 108:801–810

    Article  CAS  Google Scholar 

  19. Zarkovic N (2003) Mol Asp Med 24:281–291

    Google Scholar 

  20. Skrzydlewska E, Sulkowsky S, Koda M, Zalewsky B, Kanczuga-Koda L, Sulkowska M (2005) Lipid peroxidation and antioxidant status in colorectal cancer. World J Gastroenterol 11:403–406

    CAS  Google Scholar 

  21. Beretta G, Furlanettob S, Regazzonia L, Zarrella M, Facino RM (2008) Quenching of α,β-unsaturated aldehydes by green tea polyphenols: HPLC–ESI-MS/MS studies. J Pharm Biomed Anal 48(3):606–611

    Article  CAS  Google Scholar 

  22. Zou Y-F, Rang W-Q, Li D-Y (2008) Protective effect of green tea polyphenols on damages of HUVEC-12 induced by formaldehyde and its mechanism. Xiandai Yufang Yixue 35(13):2537–2539

    CAS  Google Scholar 

  23. Wallace LA (1989) The exposure of general population to benzene. Cell Biol Toxicol 5:297–314

    Article  CAS  Google Scholar 

  24. Lee SF, Liang YC, Lin JK (1995) Inhibition of 1, 2, 4-benzenetriol-generated active oxygen species and induction of phase II enzymes by green tea polyphenols. Chem Biol Interact 98:283–301

    Article  CAS  Google Scholar 

  25. Kalf GF (1987) Recent advances in the metabolism and toxicity of benzene. CRC Crit Rev Toxicol 18:141–159

    Article  CAS  Google Scholar 

  26. Sammett D, Lee EW, Kocsis JJ, Snyder R (1977) Partial hepatectomy reduced both the metabolism and toxicity of benzene. J Toxicol Environ Health 5:785–792

    Article  Google Scholar 

  27. Subrahmanyam VV, Ross D, Eastmond DA, Smith MT (1991) Potential role of free radicals in benzene-induced myelotoxicity and leukemia. Free Rad Biol Med I1:495–515

    Article  Google Scholar 

  28. McDonald TA, Waidyanatha S, Rappaport SM (1993) Production of benzoquinone adducts with hemoglobin and bone-marrow proteins following administration of [13C6] benzene to rats. Carcinogenesis 14:1921–1925

    Article  CAS  Google Scholar 

  29. Neun DJ, Penn A, Snyder CA (1992) Evidence for strain-specific differences in benzene toxicity as a function of host target cell susceptibility. Arch Toxicol 66(1):l–17

    Google Scholar 

  30. Manning BW, Adams DO, Lewis JG (1994) Effects of benzene metabolites on receptor-mediated phagocytosis and cytoskeletal integrity in mouse peritoneal macrophages. Toxicol Appl Pharmacol 126:214–223

    Article  CAS  Google Scholar 

  31. Soucek P, Filipcova B, Gut L (1994) Cytochrome P450 destruction and radical scavenging by benzene and its metabolites, evidence for the key role of quinones. Biochem Pharmacol 47:2233–2242

    Article  CAS  Google Scholar 

  32. Zhang L, Venkatesh P, Robertson Creek ML, Smith MT (1994) Detection of 1, 2, 4 benzentriol induced aneuploidy and microtubule disruption by fluorescence in situ hybridization and immunocytochemistry. Mutat Res 320:315–327

    Article  CAS  Google Scholar 

  33. Post GB, Snyder R, Kalf GF (1984) Inhibition of mRNA synthesis in rabbit bone marrow nuclei in vitro by quinone metabolites of benzone. Chem Biol Interact 50:203–211

    Article  CAS  Google Scholar 

  34. Kolachana P, Subrahmanyam VV, Meyer KB, Zhang L, Smith MT (1993) Benzene and its phenolic metabolites produce oxidative DNA damage in HL60 cells in vitro and in the bone marrow in vivo. Cancer Res 53:1023–1026

    CAS  Google Scholar 

  35. Li Y, Trush MA (1993) DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(lI)/Cu(I) redox cycle and reactive oxygen generation. Carcinogenesis 14:1303–1311

    Article  CAS  Google Scholar 

  36. Zhang L, Robertson ML, Kolachana P, Davison AJ, Smith MT (1993) Benzene metabolite, 1, 2, 4 benzenetriol, induces micronuclei and oxidative DNA damage in human lymphocytes and HL 60 cells. Environ Mol Mutat 21:339–348

    Article  CAS  Google Scholar 

  37. Wang ZY, Huang MT, Ferraro T, Wong CQ, Lou YR, Reuhl K, latropoulos M, Yang CS, Conney AH (1992) Inhibitory effect of green tea in the drinking water on tumorigenesis by ultraviolet light and 12-O-tetradecanoylphorbol-13-acetate in the skin of SKH-I mice. Cancer Res 52:1162–1170

    CAS  Google Scholar 

  38. Han C, Yong X (1990) The effect of Chinese tea on occurrence of esophageal tumor induced by Nnitrosomethylbenzylamine formed in rats. Biomed Environ Sci 3:35–42

    CAS  Google Scholar 

  39. Shi ST, Wang ZY, Smith TJ, Hong JY, Chen WF, Ho CT, Yang CS (1994) Effects of green tea and black tea on 4-(methylnitrosamino)-I-(3-pyridyl)-I-butanone bioactivation, DNA methylation, and lung tumorigenesis in A/J mice. Cancer Res 54:4641–4647

    CAS  Google Scholar 

  40. Fujita Y, Yamane T, Tanaka M, Kuwata K, Okuzumi J, Takahashi T, Fujiki H, Okuda T (1989) Inhibitory effect of (-)-epigallocatechin gallate on carcinogenesis with N-ethyl-N-nitrosoguanidine in mouse duodenum. Jpn J Cancer Res 80:503–505

    CAS  Google Scholar 

  41. US EPA (1986) Guidelines for carcinogen risk assessment. Fed Regist 51:33993–34003

    Google Scholar 

  42. Li H, Cheng Y, Wang H, Sun H, Liu Y, Liu K, Peng S (2003) Inhibition of nitrobenzene-induced DNA and hemoglobin adductions by dietary constituents. Appl Radiat Isot 58:291–298

    Article  CAS  Google Scholar 

  43. Cattley R, Everitt JI, Gross EA, Moss OR, Hamm TE, Popp JA (1994) Carcinogenicity and toxicity of inhaled nitrobenzene in B6C3F1mice and and CD rats. Fundam Appl Toxicol 22:328–340

    Article  CAS  Google Scholar 

  44. US EPA (1996) Proposed guidelines for carcinogen risk assessment. Fed Regist 61(79):17960–18011

    Google Scholar 

  45. Holder JW (1999) Nitrobenzene carcinogenicity in animals and human hazard evaluation. Toxicol Ind Health 15:445–457

    CAS  Google Scholar 

  46. Mason RP (1982) Free-radical intermediates in the metabolism of toxic chemicals. In: Pryor WA (ed) Free radicals in biology, vol 5. Academic Press, New York, pp 161–222

    Google Scholar 

  47. Kuroda Y, Hara Y (1999) Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat Res 436(1):69–97

    Article  CAS  Google Scholar 

  48. Van Pul WAJ et al (1998) The potential for long-range transboundary atmospheric transport. Chemosphere 37(1):113–141

    Article  Google Scholar 

  49. Khan WA, Wang ZY, Athar M, Bickers DR, Mukhtar H (1988) Inhibition of the skin tumorigenicity of (±)-7β, 8α-dihydroxy-9α, 10α -epoxy-7, 8, 9, 10 tetrahydrobenzo[a]pyrene by tannic acid, green tea polyphenols and quercetin in Sencar mice. Cancer Lett 42:7–12

    Article  CAS  Google Scholar 

  50. Das M, Khan WA, Asokan P, Bickers DR, Mukhtar H (1987) Inhibition of polycyclic aromatic hydrocarbon–DNA adduct formation in epidermis and lung of Sencar mice by naturally occurring plant phenols. Cancer Res 47:773–776

    Google Scholar 

  51. Huang MT, Wood AW, Newmark HL, Sayer JM, Yagi H, Jerina DM, Conney AH (1983) lnhibition of the mutagenicity of bay-region dial-epoxides of polycyclic aromatic hydrocarbons by phenolic plant flavonoids. Carcinogenesis 4:1631–1637

    Article  CAS  Google Scholar 

  52. Jeffery AM, Weinstein FB, Jennette KW, Grzeskowiak K, Nakahishi K, Harvey RG, Harris CC (1977) Structure of benzo(a)pyrene–nucleic acid adducts formed in human and bronchial explants. Nature (London) 269:348–350

    Article  Google Scholar 

  53. Mukhtar H, Das M, Khan WA, Wang ZY, Bik DP, Bickers DR (1988) Exceptional activity of tannic acid among naturally occurring plant phenols for protection against 7, 12-dimethylbenz(a)anthracene, benzo(a)pyrene, 3-methylcholanthrene, and N-methyl-Nnitrosourea- induced skin tumorigenesis in mice. Cancer Res 48:2361–2365

    CAS  Google Scholar 

  54. Nakayama J, Yuspa SH, Poirier MC (1984) Benzo(a)pyrene–DNA adduct formation and removal in mouse epidermis in vivo and in vitro: relationship of DNA binding to initiation of skin carcinogenesis. Cancer Res 44:4087–4095

    CAS  Google Scholar 

  55. Muto S, Yokoi T, Gondo Y, Katsuki M, Shioyama Y, Fujita K, Kamataki T (1999) Inhibition of benzo[a]pyrene-induced mutagenesis by (−)-epigallocatechin gallate in the lung of rpsL transgenic mice. Carcinogenesis 20:421–424

    Article  CAS  Google Scholar 

  56. Jiang T, Glickman BW, de Boer JG (2001) Protective effect of green tea against benzo[a]pyrene-induced mutations in the liver of Big Blue transgenic mice. Mutat Res 480(481):147–151

    Google Scholar 

  57. Broberg K, Tinnerberg H, Axmon A, Warholm M, Rannug A, Littorin M (2008) Influence of genetic factors on toluene diisocyanate-related symptoms: evidence from a cross-sectional study. Environ Health 7:15

    Article  CAS  Google Scholar 

  58. Mappe CE, Boschetto P, Zocca E, Milani GF, Pivirotto F, Teggazin V, Fabbri LM (1987) Pathogenesis of late asthmatic reactions induced by exposure to isocyanates. Bull Eur Physiopathol Respir 23(6):583–586

    Google Scholar 

  59. Kima S-H, Parka H-J, Leeb C-M, Choi I-W, Moon D-O, Roh H-J, Lee H-K, Park Y-M (2006) Epigallocatechin-3-gallate protects toluene diisocyanate-induced airway inflammation in a murine model of asthma. FEBS Lett 580:1883–1890

    Article  CAS  Google Scholar 

  60. Boschetto P, Fabbri LM, Zocca E, Milani G, Pivirotto F, Dal Vecchio A, Plebani M, Mapp CE (1988) Prednisone inhibits late asthmatic reactions and airway inflammation induced by toluene diisocyanate in sensitized subjects. J Allerg Clin Immunol 81(2):454

    Article  Google Scholar 

  61. Kay AB (1991) Asthma and inflammation. J Allerg Clin Immunol 87:893–910

    Article  CAS  Google Scholar 

  62. Busse WW, William FC, Sedgwick JD (1993) Mechanism of airway inflammation in asthma. Am Rev Respir Dis 147:20–24

    Google Scholar 

  63. Lee YC, Kwak YG, Song CH (2002) Contribution of vascular endothelial growth factor to airway hyper-responsiveness and inflammation in a murine model of toluene diisocyanate induced asthma. J Immunol 168:3595–3600

    CAS  Google Scholar 

  64. Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade Chemical Review Committee inclusion of chemicals in Annex III of the Rotterdam Convention: review of notifications of final regulatory actions to ban or severely restrict a chemical, carbon tetrachloride First meeting Geneva, 11–18 February 2005 [cited 2005; available from http://www.pic.int/INCs/CRC1/y25add2)/English/CRC%201-25Add2%20carbon%20tetrachloride%20korea.doc]

  65. Tsukamoto H, Matsuoka M, French SW (1990) Experimental models of hepatic fibrosis: a review. Semin Liver Dis 10:56–65

    Article  CAS  Google Scholar 

  66. Zhen M-C, Wang Q, Huang X-H, Cao L-Q, Chen X-L, Sun K, Liu Y-J, Li W, Zhang L-J (2007) Green tea polyphenol epigallocatechin-3-gallate inhibits oxidative damage and preventive effects on carbon tetrachloride-induced hepatic fibrosis. J Nutr Biochem 18(12):795–805

    Article  CAS  Google Scholar 

  67. Saika M, Ueyama T, Senba E (2000) Expression of immediate early genes HSP70, and COX-2 mRNAs in rat stomach following ethanol ingestion. Dig Dis Sci 45:2455–2462

    Article  CAS  Google Scholar 

  68. Liu ES, Cho CH (2000) Relationship between ethanol-induced gastritis and gastric ulcer formation in rats. Digestion 62:232–239

    Article  CAS  Google Scholar 

  69. Altura BM, Gebrewold A (2002) Inhibitor of nuclear factor-Kappa B activation attenuates venular constriction, leukocyte rolling-adhesion and microvessel rupture induced by ethanol in intact rat brain microcirculation: relation to ethanol-induced brain injury. Neurosci Lett 334:21–24

    Article  CAS  Google Scholar 

  70. Yun JW, Kim YK, Lee BS, Kim CW, Hyun JS, Baik JH (2007) Effect of dietary epigallocatechin-3-gallate on cytochrome P450 2E1-dependent alcoholic liver damage: enhancement of fatty acid oxidation. Biosci Biotechnol Biochem 71:2999–3006

    Article  CAS  Google Scholar 

  71. Dobrzýnska I, Szachowicz-Petelska B, Ostrowska J, Skrzydlewska E, Figaszewski Z (2005) Protective effect of green tea on erythrocyte membrane of different age rats intoxicated with ethanol. Chem Biol Interact 156:41–53

    Article  CAS  Google Scholar 

  72. Lee J-S, Oh T-Y, Kim Y-K, Baik J-H, So S, Hahm K-B, Surh Y-J (2005) Protective effects of green tea polyphenol extracts against ethanol-induced gastric mucosal damages in rats: stress-responsive transcription factors and MAP kinases as potential targets. Mutat Res 579:214–224

    Article  CAS  Google Scholar 

  73. Kaviarasan S, Viswanathan P, Ravichandran MK, Anuradha CV (2008) (-)-Epigallocatechin gallate (EGCG) prevents lipid changes and collagen abnormalities in chronic ethanol-fed rats. Toxicol Mech Methods 18(5):425–432

    Article  CAS  Google Scholar 

  74. Zheng N, Wang Q, Zheng D (2007) Health risk of Hg, Pb, Cd, Zn and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables. Sci Total Environ 383:81–89

    Article  CAS  Google Scholar 

  75. Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  CAS  Google Scholar 

  76. Roy P, Saha A (2002) Metabolism and toxicity of arsenic: a human carcinogen. Curr Sci 82:38–45

    CAS  Google Scholar 

  77. Ghaedi M, Shokrollahi A, Kianfar AH, Mirsadeghi AS, Pourfarokhi A, Soylak A (2008) The determination of some heavy metals in food samples by flame atomic absorption spectrometry after their separation-preconcentration on bis salicyl aldehyde, 1, 3 propan diimine (BSPDI) loaded on activated carbon. J Hazard Mater 154:128–134

    Article  CAS  Google Scholar 

  78. Celechowska O, Svobodova Z, Randak T (2005) Arsenic content in tissues of fish from the River Elbe. Acta Vet Brno 74:419–425

    Article  Google Scholar 

  79. Sinha D, Roy M, Siddiqi M, Bhattacharya RK (2005) Arsenic-induced micronuclei formation in mammalian cells and its counteraction by tea. J Env Path Toxicol Oncol 24(1):45–56

    Article  CAS  Google Scholar 

  80. Page AL, Chang AC (1986) Cadmium. Spring, Berlin, pp 33–75

    Google Scholar 

  81. Choia J-H, Rheeb I-K, Parkc K-Y, Parkd K-Y, Kime J-K, Rhee S-J (2003) Action of green tea catechin on bone metabolic disorder in chronic cadmium-poisoned rats. Life Sci 73:1479–1489

    Article  CAS  Google Scholar 

  82. Piscator M (1985) Dietary exposure to cadmium and health effect: impact of environmental changes. Environ Health Perspect 63:127–132

    Article  CAS  Google Scholar 

  83. Diana Paula Hallare (Christelle Sabatier) (2008) Effect of green tea polyphenol on cadmium toxicity in Caenorhabditis elegans.ncur, Abstract

  84. Tuzen M, Soylak M (2006) Chromium speciation in environmental samples by solid phase extraction on Chromosorb 108. J Hazard Mater 129:266–273

    Article  CAS  Google Scholar 

  85. Kumral E (2007) Speciation of chromium in waters via sol–gel preconcentration prior to atomic spectrometric determination, MS thesis, The Graduate School of Engineering and Sciences of Izmir Institute of Technology

  86. Shi X, Ye J, Leonard SS, Ding M, Vallyathan V, Castranova V, Rojanasakul Y, Dong Z (2000) Antioxidant properties of (−)-epicatechin-3-gallate and its inhibition of Cr(VI)-induced DNA damage and Cr(IV)- or TPA-stimulated NF-KappaB activation. Mol Cell Biochem 206:125–132

    Article  CAS  Google Scholar 

  87. Shotyk W, Weiss D, Appleby PG, Cheburkin AK, Gloor RFM, Kramers JD, Reese S, Van Der Knaap WO (1998) History of atmospheric lead deposition since 12, 370 (14) C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281:1635–1640

    Article  CAS  Google Scholar 

  88. Chen L, Yang X, Jiao H, Zhao B (2002) Tea catechins protect against lead-induced cytotoxicity, lipid peroxidation, and membrane fluidity in HepG2 cells. Toxicol Sci 69:149–156

    Article  CAS  Google Scholar 

  89. Juberg DR, Kleiman CF, Kwon SC (1997) Position paper of the American Council on science and health: lead and human health. Ecotoxicol Environ Saf 38:162–180

    Article  CAS  Google Scholar 

  90. Cory-Slechta DA, Pound JG (1995) Lead neurotoxicity. In: Chang LW, Dyer RS (eds) Handbook of neurotoxicology. Dekker, New York, pp 66–89

    Google Scholar 

  91. Bechara EJH, Medeiros MHG, Monteiro HP, Her-mes-Lima M, Pereira B, Demasi M, Costa CA, Ab-dalla DSP, Onuki J, Wendel CMA, Di Mascio P (1993) A free-radical hypothesis of lead poisoning and inborn porphyrias associated with 5-aminolevulinic acid overload. Quim Nova 16:385–392

    CAS  Google Scholar 

  92. Ito Y, Niiya Y, Kurita H, Shima S, Sarai S (1985) Serum lipid peroxide level and blood superoxide dismutase activity in workers with occupational exposure to lead. Int Arch Occup Environ Health 56:119–127

    Article  CAS  Google Scholar 

  93. White JS, Tobin JM, Cooney JJ (1999) Organotin compounds and their interactions with microorganisms. Can J Microbiol 45:541–554

    Article  CAS  Google Scholar 

  94. Huang JH, Matzner E (2004) Degradation of organotin compounds in organic and mineral forest soils. J Plant Nutr Soil Sci 167:33–38

    Article  CAS  Google Scholar 

  95. Schulte-Oehlmann U, Oehlmann J, Fioroni P, Bauer B (1997) Imposex and reproductive failure in Hydrobia ulvae (Gastropoda: Prosobranchia). Mar Biol 128:257–266

    Article  Google Scholar 

  96. Jurkiewicz M, Averill-Bates DA, Marion M, Denizeau F (2004) Involvement of mitochondrial and death receptor pathways in tributyltin-induced apoptosis in rat hepatocytes. Biochim Biophys Acta 1693:15–27

    Article  CAS  Google Scholar 

  97. Huigang L, Zonglou G, Lihong X, Stephen H (2008) Protective effect of green tea polyphenols on tributyltin-induced oxidative damage detected by in vivo and in vitro models. Environ Toxicol 23(1):77–83

    Article  CAS  Google Scholar 

  98. Upham BL, Kang K-S, Cho H-Y, Trosko JE (1997) Hydrogen peroxide inhibits gap junctional intercellular communication in glutathione sufficient but not glutathione deficient cells. Carcinogenesis 18:37–42

    Article  CAS  Google Scholar 

  99. Kang K-S, Kang B-C, Lee B-J, Che J-H, Li G-X, Trosko JE, Lee Y-S (2000) Preventive effect of epicatechin and ginsenocide Rb2 on the inhibition of gap junctional intercellular communication by TPA and H2O2

  100. Leanderson P, Faresjo AO, Tagesson C (1997) Green tea polyphenols inhibit oxidant-induced DNA strand breakage in cultured lung cells. Free Radic Biol Med 23:235–242

    Article  CAS  Google Scholar 

  101. Koh SH, Kwon H, Kim KS, Kim J, Kim MH, Yu HJ, Kim M, Lee KW, Do BR, Jung HK, Yang KW, Appel SH, Kim SH (2004) Epigallocatechin gallate prevents oxidative-stress-induced death of mutant Cu/Zn-superoxide dismutase (G93A) motorneuron cells by alteration of cell survival and death signals. Toxicology 202:213–225

    Article  CAS  Google Scholar 

  102. Levites Y, Youdim MBH, Maor G, Mandel S (2002) Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-κB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol 63:21–29

    Article  CAS  Google Scholar 

  103. Cohen G, Heikkila RE (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 249:2447–2452

    CAS  Google Scholar 

  104. Merecr LD, Kelly BL, Horne MK, Beart PM (2005) Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem Pharmacol 69:339–345

    Article  CAS  Google Scholar 

  105. Gerlach M, Gotz M, Dirr A, Kupsch A, Janetzky B, Oertel W, Riederer P (1996) Acute MPTP treatment produces no changes in mitochondrial complex activities and indices of oxidative damage in the common marmoset ex vivo one week after exposure to the toxin. Neurochem Int 28(1):41–49

    Article  CAS  Google Scholar 

  106. Pan T, Fei J, Zhou X, Jankovic J, Weidong L (2003) Effects of green tea polyphenols on dopamine uptake and on MPP+-induced dopamine neuron injury. Life Sci 72:1073–1083

    Article  CAS  Google Scholar 

  107. Huguet F, Page G, Morel P, Tallineau C, Piriou A (1997) MPTP toxicity in rat striatal slices: dopamine uptake alteration does not appear to be related to lipid peroxidation. Toxicology 122(1):93–99

    Article  CAS  Google Scholar 

  108. Kim JW, Kim DH, Kim SH, Cha JK (2000) Association of the dopamine transporter gene with Parkinson’s disease in Korean patients. J Korean Med Sci 15(4):449–451

    CAS  Google Scholar 

  109. Bezard E, Gross CE, Fournier MC, Dovero S, Bloch B, Jaber M (1999) Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter. Exp Neurol 155(2):268–273

    Article  CAS  Google Scholar 

  110. Reiko T (2005) Protective effects of (-)epigallocatechin gallate and (+)catechin on nitrogen oxide-induced sister chromatid exchange. J Health Sci 51(1):89–92

    Article  Google Scholar 

  111. Jung JY, Han CR, Jeong YJ, Kim HJ, Lim HS, Lee KH, Park HO, Oh WM, Kim SH, Kim WJ (2007) Epigallocatechin gallate inhibits nitric oxide-induced apoptosis in rat PC12 cells. Neurosci Lett 411(3):222–227

    Article  CAS  Google Scholar 

  112. Hoffmann D, Rathkamp G (1968) Chemical studies on tobacco smoke. III. Primary and secondary nitroalkanes in cigarette smoke. Beitriige zur Tabakforschung 4:124–134

    CAS  Google Scholar 

  113. Zitting A, Savolainen H, Nickels J (1981) Acute effects of 2-nitropropane on rat liver and brain. Toxicol Lett 9:237–246

    Article  CAS  Google Scholar 

  114. Lewis TR, Ulrich CE, Busey WM (1979) Subchronic inhalation toxicity of nitromethane and 2-nitropropane. J Environ Pathol Toxicol 2:233–249

    CAS  Google Scholar 

  115. Fiala ES, Czerniak R, Castonguay A, Conaway CC, Rivenson A (1987) Assay of 1-nitropropane, 2-nitropropane, 1-azoxypropane and 2-azoxypropane for carcinogenicity by gavage in Sprague–Dawley rats. Carcinogenesis 8:1947–1949

    Article  CAS  Google Scholar 

  116. Adachi S, Kawamura K, Takemoto K (1994) Increased susceptibility to oxidative DNA damage in regenerating liver. Carcinogenesis 15:539–543

    Article  CAS  Google Scholar 

  117. Fiala ES, Conaway CC, Mathis JE (1989) Oxidative DNA andRNA damage in the livers of Sprague–Dawley rats treated with the hepatocarcinogen 2-nitropropane. Cancer Res 49:5518–5522

    CAS  Google Scholar 

  118. Srinivasan P, Sabitha KE, Shyamaladevi CS (2007) Attenuation of 4-nitroquinoline 1-oxide induced in vitro lipid peroxidation by green tea polyphenols. Life Sci 80:1080–1086

    Article  CAS  Google Scholar 

  119. Tanaka T, Makita H, Ohnishi M, Hirose Y, Wang A, Mori H, Satoh K, Hara A, Ogawa H (1994) Chemoprevention of 4-nitroquinoline 1-oxide induced oral carcinogenesis by dietary curcumin and hesperidin: comparison with the protective effect of beta-carotene. Cancer Res 54:4653–4659

    CAS  Google Scholar 

  120. Sugimura T (1992) Multistep carcinogenesis: a 1992 prospective. Science 258:603–607

    Article  CAS  Google Scholar 

  121. Srinivasan P, Sabitha KE, Shyamala Devi CS (2004) Therapeutic efficacy of green tea polyphenols on cellular thiols in 4-Nitroquinoline 1-oxide induced oral carcinogenesis. Chem Biol Interact 149:81–87

    Article  CAS  Google Scholar 

  122. Kuroda Y (1996) Bio-antimutagenic activity of green tea catechins in cultured Chinese hamster V79cells. Mutat Res 361:179–186

    CAS  Google Scholar 

  123. Choi SY, Chung MJ, Sung NJ (2002) Volatile N-nitrosamine inhibition after intake Korean green tea and Maesil (Prunus mume SIEB. et ZACC.) extracts with an amine-rich diet in subjects ingesting nitrate. Food Chem Toxicol 40:949–957

    Article  CAS  Google Scholar 

  124. Vermeer ITM, Pachen DMFA, Dalliga JW, Kleinjans JCS, van Maanen JMS (1998) Volatile N-nitrosamine formation after intake of nitrate at the ADl Level in combination with an amine rich diet. Environ Health Perspect 106:459–462

    Article  CAS  Google Scholar 

  125. Lu M-J, Chen C (2007) Enzymatic tannase treatment of green tea increases in vitro inhibitory activity against N-nitrosation of dimethylamine. Process Biochem 42:1285–1290

    Article  CAS  Google Scholar 

  126. Shapiro KB, Hotchkiss JH, Roe DA (1991) Quantitative relationship between oral nitrate-reducing activity and the endogenous formation of N-nitrosoamino acids in humans. Food Chem Toxicol 29:751–755

    Article  CAS  Google Scholar 

  127. Bartholemew B, Hill MJ (1984) The pharmacology of dietary nitrate and the origin of urinary nitrate. Food Chem Toxicol 22:789–795

    Article  Google Scholar 

  128. Wagner DA, Shultz DS, Deen WM, Young VR, Tannenbaum SR (1983) Metabolic fate of an oral dose of 15 N-labeled nitrate in humans: effect of diet supplementation with ascorbic acid. Cancer Res 43:1921–1925

    CAS  Google Scholar 

  129. Hotchkiss JH (1989) Relative exposure to nitrite, nitrate, and N-nitroso compounds from endogenous and exogenous sources. In: Taylar SR, Scanlan RA (eds) Food toxicology, a perspective on the relative risks. Marcel Decker, New York, pp 57–100

    Google Scholar 

  130. Ebata J, Fukagai N, Furukawa H (1998) Mechanisms of antimutagenesis by catechins towards N-nitrosodimethylamine. Environ Mutagen Res 20:45–50

    CAS  Google Scholar 

  131. Stich HF (1992) Teas and tea components as inhibitors of carcinogen formation in model systems and man. Prev Med 21:377–384

    Article  CAS  Google Scholar 

  132. Banerjee BD, Seth V, Bhattacharya A, Pasha ST, Chakraborty AK (1999) Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol Lett 107:33–47

    Article  CAS  Google Scholar 

  133. Tinoco R, Halperin D (1998) Poverty, production, and health: inhibition of erythrocyte cholinesterase via occupational exposure to organo-phosphate insecticides in Chiapas. Mex Arch Environ Health 53:29–35

    Article  Google Scholar 

  134. Almeida MG, Fanini F, Davino SC, Aznar AE, Koch OR, Barros SBM (1997) Pro- and anti-oxidant parameters in rat liver after short-term exposure to hexachlorobenzene. Hum Exp Toxicol 16:257–261

    Article  CAS  Google Scholar 

  135. Khrer JP (1993) Free radical as mediator of tissue injury and disease. Crit Rev Toxicol 23:21–48

    Article  Google Scholar 

  136. Koner BC, Banerjee BD, Ray A (1998) Organochlorine pesticide-induced oxidative stress and immune suppression in rats. Indian J Exp Biol 36:395–398

    CAS  Google Scholar 

  137. Seth V, Banerjee BD, Chakraborty AK, Bhattacharya A (1997) Acetylcholine esterase and gamma-glutamyl transpeptidase activity and glutathione level of lymphocytes in human cases of malathion poisoning. Proceedings of the annual conference of the Indian Immunological Society, Calcutta, India, 24, p 55

  138. Robinson MK, Rodrick ML, Jacobs DO, Rounds JD, Collins KH, Saporoschetz IB, Mannick JA, Wilmore DW (1993) Glutathione depletion in rats impairs T cell and macrophage immune function. Arch Surg 126:29–35

    Google Scholar 

  139. WHO, The WHO recommended classification of pesticides by hazard 1996–1997, International Programme on Chemical Safety, WHO/IPCS/96.3

  140. Richardson RJ, Moore TB, Kayyali US, Fowke JH, Randall JC (1993) Inhibition of hen brain acetylcholinesterase and neurotoxic esterase by chlorpyriphos in vivo and kinetics of inhibition by chlorpyriphos oxon in vitro: application to assessment of neuropathic risk. Fundam Appl Toxicol 20:273–279

    Article  CAS  Google Scholar 

  141. Mahaboob Khan S, Kour G (2007) Subacute oral toxicity of chlorpyriphos and protective effect of green tea extract. Pestic Biochem Physiol 89:118–123

    Article  CAS  Google Scholar 

  142. Goel A, Chauhan DP, Dhawan DK (2000) Protective effects of zinc in chlorpyriphos induced hepatotoxicity: a biochemical and trace elemental study. Biol Trace Elem Res 74:171–183

    Article  CAS  Google Scholar 

  143. Goel A, Dani V, Dhawan DK (2005) Protective effect of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture chlorpyriphos induced hepatotoxicity. Chem Biol Interact 156:131–140

    Article  CAS  Google Scholar 

  144. Miyazaki Z, Hodgson GC (1972) Chronic toxicity of Dursban and its metabolite, 3, 5, 6-trichloro-2-pyridinol in chickens. Toxicol Appl Pharmacol 23:391–398

    Article  CAS  Google Scholar 

  145. Khan MF, Abidi P, Anwar J, Roy PK, Anand M (1990) Pulmonary biochemical assessment of fenitrothion toxicity in rats. Bull Environ Contam Toxicol 45:598–603

    Article  CAS  Google Scholar 

  146. Nigg HN, Srivastava AK (1987) Studies on the interaction between manganese and fenitrothion in rats. Toxicol Lett 36(3):221–226

    Article  Google Scholar 

  147. Alsahhaf ZY (2006) Toxicity of sumathion on albino rats: hematological and biochemical studies. J Appl Sci 6(14)

  148. Labana S, Bansal RC, Mahmood A (2001) Age related effects of organochlorine insecticide linden on intestinal brush border membrane in rats. Ind J Exp Biol 39:1017–1021

    CAS  Google Scholar 

  149. Kumar R, Roy S, Rishi R, Sharma CB (1993) Metabolic fate of fenitrothion in liver, kidney and brain of rat. Biomed Chromatogr 7:301–305

    Article  CAS  Google Scholar 

  150. Elhalwagy MEA, Darwish NS, Zaher EM (2008) Prophylactic effect of green tea polyphenols against liver and kidney injury induced by fenitrothion insecticide. Pestic Biochem Physiol, pp 9181–9189

  151. Bus JS, Aust SD, Gibson JE (1977) Lipid peroxidation as a proposed mechanism for paraquat toxicity. In: Autor AP (ed) Biochemical mechanism of paraquat toxicity. Academic Press, New York, pp 157–174

    Google Scholar 

  152. Higuchi A, Yonemitsu K, Koreeda A, Tsunenari S (2003) Inhibitory activity of epigallocatechin gallate (EGCg) in paraquat-induced microsomal lipid peroxidation—a mechanism of protective effects of EGCg against paraquat toxicity. Toxicology 183:143–149

    Article  CAS  Google Scholar 

  153. Tsunenari S, Kibayashi K, Furusawa Y (1992) Green tea and its effective substance, epigallocatechin gallate (EGCg), reduce paraquat toxicity in mice. Jpn J Forensic Toxicol 10(2):84–85

    CAS  Google Scholar 

  154. Yonemitsu K, Koreeda A, Higuchi A, Tsunenari S (1999) Protective effects of green tea and epigallocatechin gallate against paraquat toxicity in mice. Jpn J Toxicol 12:143–150

    CAS  Google Scholar 

  155. Ando N, Igarashi K, Takenaka A, Yukihiko H (2000) A comparison of the protective effects between epigallocatechin gallate or epicatechin gallate and the mixtures of their components on paraquat-induced oxidative stress in rats. Food Sci Technol Res 6(2):146–149

    Article  CAS  Google Scholar 

  156. Hou R-R, Chen J-Z, Chen H, Kang X-G, Li M-G, Wang B-R (2008) Neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) on paraquat-induced apoptosis in PC12 cells. Cell Biol Int 32:22–30

    Article  CAS  Google Scholar 

  157. Radad K, Rausch WD, Gille G (2006) Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem Int 49:379–386

    Article  CAS  Google Scholar 

  158. Chung W-G, Miranda CL, Maier CS (2007) Epigallocatechin gallate (EGCG) potentiates the cytotoxicity of rotenone in neuroblastoma SH-SY5Y cells. Brain Res 1176:133–142

    Article  CAS  Google Scholar 

  159. Wang G, Qi C, Fan GH, Zhou HY, Chen SD (2005) PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Lett 579:4005–4011

    Article  CAS  Google Scholar 

  160. Molina-Jimenez MF, Sanchez-Reus MI, Benedi J (2003) Effect of fraxetin and myricetin on rotenone-induced cytotoxicity in SH-SY5Y cells: comparison with N-acetylcysteine. Eur J Pharmacol 472:81–87

    Article  CAS  Google Scholar 

  161. Shamoto-Nagai M, Maruyama W, Kato Y, Isobe K, Tanaka M, Naoi M, Osawa T (2003) An inhibitor of mitochondrial complex I, rotenone, inactivates proteasome by oxidative modification and induces aggregation of oxidized proteins in SH-SY5Y cells. J Neurosci Res 74:589–597

    Article  CAS  Google Scholar 

  162. Wang X, Qin ZH, Leng Y, Wang Y, Jin X, Chase TN, Bennett MC (2002) Prostaglandin A1 inhibits rotenone-induced apoptosis in SH-SY5Y cells. J Neurochem 83:1094–1102

    Article  CAS  Google Scholar 

  163. Cho H-S, Kim S, Lee S-Y, Park JA, Kim S-J, Chun HS (2008) Protective effect of the green tea component, L-theanine on environmental toxins-induced neuronal cell death. NeuroToxicology 29:656–662

    Article  CAS  Google Scholar 

  164. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487

    Article  CAS  Google Scholar 

  165. Van der Vliet A, Smith D, O’Neill CA, Kaur H, Darley-Usmar V, Cross CE, Halliwell B (1994) Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem J 303:295–301

    Google Scholar 

  166. Spencer JP, Wong J, Jenner A, Aruoma OI, Cross CE, Halliwell B (1996) Base modification and strand breakage in isolated calf thymus DNA and in DNA from human skin epidermal keratinocytes exposed to peroxynitrite or 3-morpholinosydnonimine. Chem Res Toxicol 9:1152–1158

    Article  CAS  Google Scholar 

  167. Szabo C, Zingarelli B, O’Connor M, Salzman AL (1996) DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci USA 93:1753–1758

    Article  CAS  Google Scholar 

  168. Cookson MR, Ince PG, Shaw PJ (1998) Peroxynitrite and hydrogen peroxide induced cell death in the NSC34 neuroblastoma x spinal cord cell line: role of poly (ADP-ribose) polymerase. J Neurochem 70:501–508

    Article  CAS  Google Scholar 

  169. Bapat S, Verkleij A, Post JA (2001) Peroxynitrite activates mitogen-activated protein kinase (MAPK) via a MEK-independent pathway: a role for protein kinase C. FEBS Lett 499:21–26

    Article  CAS  Google Scholar 

  170. Oh-Hashi K, Maruyama W, Isobe K (2001) Peroxynitrite induces GADD 34, 45, and 153 VIA p38 MAPK in human neuroblastoma SH-SY5Y cells. Free Radical Biol Med 30:213–221

    Article  CAS  Google Scholar 

  171. Halliwell B, Zhao K, Whiteman M (1999) Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good. Free Radic Res 31:651–669

    Article  CAS  Google Scholar 

  172. Greenacre SAB, Ischiropoulos H (2001) Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res 34:541–581

    Article  CAS  Google Scholar 

  173. Ho H, Wei T, Cheng M, Chiu DT (2006) Green tea polyphenol epigallocatechin-3-gallate protects cells against peroxynitrite-induced cytotoxicity: modulatory effect of cellular G6PD status. J Agric Food Chem 54(5):1638–1645

    Article  CAS  Google Scholar 

  174. Gescher A, Brodie AE, Reed DJ (1985) Oxidative properties of 12-O-tetradeca noyiphorbol-13-acetate-stimulated human blood monomorphonuclear leukocytes and their toxicity against a human lung carcinoma cell line1. Cancer Res 45:1638–1643

    CAS  Google Scholar 

  175. Sai K, Upham BL, Kang K-S, Hasegawa R, Inoue T, Trosko JE (1998) Inhibitory effect of pentachlorophenol on gap junctional intercellular communication in rat liver epithelial cells in vitro. Cancer Lett 130:9–17

    Article  CAS  Google Scholar 

  176. Tulayakul P, Dong KS, Li JY, Manabe N, Kumagai S (2007) The effect of feeding piglets with the diet containing green tea extracts or coumarin on in vitro metabolism of aflatoxin B1 by their tissues. Toxicon 50:339–348

    Article  CAS  Google Scholar 

  177. Ito Y, Ohnishi S, Fujie K (1989) Chromosome aberrations induced by aflatoxin B1 in rat bone marrow cells in vivo and their suppression by green tea. Mutat Res 222:253–261

    Article  CAS  Google Scholar 

  178. Hour T-C, Liang Y-C, Chu I-S, Lin J-K (1999) Inhibition of eleven mutagens by various tea extracts, (-)epigallocatechin-3-gallate, gallic acid and caffeine. Food Chem Toxicol 37:569–579

    Article  CAS  Google Scholar 

  179. Hendricks JD, Sinnhuber RO, Nixon JE, Wales JH, Masri MS, Hsieh DPH (1980) Carcinogenic response of rainbow trout (Salmo gairdneri) to Aflatoxin Q1 and synergistic effect of cyclopenoid fatty acid. J Natl Cancer Inst 64:523–527

    CAS  Google Scholar 

  180. Xu C, Shu W-Q, Qiu Z-Q, Chen J-A, Zhao Q, Cao J (2007) Protective effects of green tea polyphenols against subacute hepatotoxicity induced by microcystin-LR in mice. Environ Toxicol Pharmacol 24:140–148

    Article  CAS  Google Scholar 

  181. de Figuereido DR, Azeiteiro UM, Esteves SM, Goncalves FJM, Pereira JM (2004) Microcystin-producing blooms—a serious global public health issue. Ecotox Environ Saf 59(2):151–163

    Article  CAS  Google Scholar 

  182. WHO (2004) Guidelines for drinking-water quality. Recommendations. Chemical fact sheets, vol 1, 3rd edn. World Health Organization, Geneva, Switzerland, pp 407–408

  183. Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, Suganuma M, Kohyama K, Ishikawa T, Carmichael WW, Fujiki H (1992) Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol 118(6):420–424

    Article  CAS  Google Scholar 

  184. Guzman ER, Solter PF (1999) Hepatic oxidative stress following prolonged sublethal microcystin LR exposure. Toxicol Pathol 27(5):582–588

    Article  CAS  Google Scholar 

  185. Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CE, Antunes MB, de Melo Filho DA, Lyra TM, Barreto VS, Azevedo SM, Jarvis WR (1998) Liver failure and death after exposure to microcystins at a haemodialysis center in Brazil. N Engl J Med 338(13):873–878

    Article  CAS  Google Scholar 

  186. Ding WX, Ong CN (2003) Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity. FEMS Microbiol Lett 220(1):1–7

    Article  CAS  Google Scholar 

  187. Costa S, Utan A, Cervellati R, Speroni E, Guerra MC (2007) Catechins: natural free-radical scavengers against ochratoxin A-induced cell damage in a pig kidney cell line (LLC-PK1). Food Chem Toxicol 45:1910–1917

    Article  CAS  Google Scholar 

  188. Sauvant C, Holzinger H, Gekle M (2005) The nephrotoxin ochratoxin A induces key parameters of chronic interstitial nephropathy in renal proximal tubular cells. Cell Physiol Biochem 15:125–134

    Article  CAS  Google Scholar 

  189. Castegnaro M, Canadas D, Vrabcheva T, Petkova-Bocharova T, Chernozemsky IN, Pfohl-Leszkowicz A (2006) Balkan endemic nephropathy: role of ochratoxin A through biomarkers. Mol Nutr Food Res 50:519–529

    Article  CAS  Google Scholar 

  190. Pfohl-Leszkowicz A, Petkova-Bocharova T, Chernozemsky IN, Castegnaro M (2004) Balkan endemic nephropathy and associated urinary tract tumors: a review on aetiological causes and the potential role of mycotoxins. Food Addit Contam 19:282–302

    Article  CAS  Google Scholar 

  191. Beretta B, De Domenico R, Gaiaschi A, Ballabio C, Galli CL, Gigliotti C, Restani P (2002) Ochratoxin A in cereal-based baby foods: occurrence and safety evaluation. Food Addit Chem 19:70–75

    Article  CAS  Google Scholar 

  192. Cabassi E, Miduri F, Cantoni AM (2005) Intoxication with fumonisin B1 (FB1) in piglets and supplementation with granulated activated carbon: cellular mediated immunoresponse. Vet Res Commun 29:225–227

    Article  Google Scholar 

  193. Plank G, Bauer J, Grunkemeier A, Fischer S, Gedek B, Berner H (1990) The protective effects of adsorbents against ochratoxin A in swine. Tierarztl Prax 18:483–489

    CAS  Google Scholar 

  194. Serafini M, Laranjinha JAN, Almeida LM, Maiani G (2000) Inhibition of human LDL lipid peroxidation by phenol-rich beverages and their impact on plasma total antioxidant capacity in humans. J Nutr Biochem 11:585–590

    Article  CAS  Google Scholar 

  195. Huang MT, Chang RL, Wood AW, Newmark HL, Sayer JM, Yagi H, Jerina DM, Cooney AH (1985) Inhibition of the mutagenicity of bay-region diol-epoxides of polycyclic aromatic hydrocarbons by tannic acid, hydroxylated anthraquinones, and hydroxylated cinnamic acid derivatives. Carcinogenesis 6:237–242

    Article  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetanjali Kaushik.

About this article

Cite this article

Kaushik, G., Satya, S. & Naik, S.N. Green tea: protective action against oxidative damage induced by xenobiotics. Mediterr J Nutr Metab 4, 11–31 (2011). https://doi.org/10.1007/s12349-010-0014-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12349-010-0014-y

Keywords

Navigation