Skip to main content
Log in

Boundness and Linearisation of a Class of Differential Equations with Piecewise Constant Argument

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The differential equations with piecewise constant argument (DEPCAs, for short) is a class of hybrid dynamical systems (combining continuous and discrete). In this paper, under the assumption that the nonlinear term is partially unbounded, we study the bounded solution and global topological linearisation of a class of DEPCAs of general type. One of the purpose of this paper is to obtain a new criterion for the existence of a unique bounded solution, which improved the previous results. The other aim of this paper is to establish a generalized Grobman–Hartman-type theorem for the topological conjugacy between a nonlinear perturbation system and its linear system. The method is based on the new obtained criterion for bounded solution. The obtained results generalized and improved some previous papers. Some novel techniques are employed in the proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aftabizadeh, A.R., Wiener, J., Xu, J.M.: Oscillatory and periodic solutions of delay differential equations with piecewise constant argument. Proc. Am. Math. Soc. 99, 673–679 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akhmet, M.U.: Integral manifolds of differential equations with piecewise constant argument of generalized type. Nonlinear Anal. 66, 367–383 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akhmet, M.U.: On the reduction principle for differential equations with piecewise constant argument of generalized type. J. Math. Appl. Math. 336, 646–663 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Akhmet, M.U.: Stability of differential equations with piecewise constant arguments of generalized type. Nonlinear Anal. 68, 794–803 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Akhmet, M.U.: Nonlinear Hybrid Continuous/Discrete Time Models. Atlantis Press, Paris (2011)

    Book  MATH  Google Scholar 

  6. Akhmet, M.U.: Exponentially dichotomous linear systems of differential equations with piecewise constant argument. Discontin. Nonlinearity Complex. 1, 337–352 (2012)

    Article  MATH  Google Scholar 

  7. Barreira, L., Valls, C.: A Grobman-Hartman theorem for nonuniformly hyperbolic dynamics. J. Differ. Equ. 228, 285–310 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barreira, L., Valls, C.: A simple proof of the Grobman-Hartman theorem for the nonuniformly hyperbolic flows. Nonlinear Anal. 74, 7210–7225 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Belitskii, G.R.: Equivalence and normal forms of germs of smooth mappings. Russ. Math. Surv. 33, 107–177 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cabada, A., Ferreiro, J.B., Nieto, J.J.: Green’s function and comparison principles for first order differential equations with piecewise constant arguments. J. Math. Anal. Appl. 291, 690–697 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Castañeda, A., Robledo, G.: A topological equivalence result for a family of nonlinear difference systems having generalized exponential dichotomy. http://arxiv.org/abs/1501.0320

  12. Castillo, S., Pinto, M.: Existence and stability of almost periodic solutions to differential equations with piecewise constant argument. Electron. J. Differ. Equ. 58, 1–15 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Chiu, K.S., Pinto, M.: Periodic solutions of differential equations with a general piecewise constant argument and applications. Electron. J. Qual. Theory Differ. Equ. 46, 1–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chiu, K.S., Pinto, M., Jeng, J.C.: Existence and global convergence of periodic solutions in the current neural network with a general piecewise alternately advanced and retarded argument. Acta Appl. Math. 133, 133–152 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cooke, K.L., Wiener, J.: Oscillations in systems of differential equations with piecewise constant delays. J. Math. Anal. Appl. 137, 221–239 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coronel, A., Maulén, C., Pinto, M., Sepúlveda, D.: Dichotomies and asymptotoic equivalence in alternately advanced and delayed differential systems. J. Math. Annal. Appl. 450, 1434–1458 (2017)

    Article  MATH  Google Scholar 

  17. Dai, L.: Nonlinear Dynamics of Piecewise Constants Systems and Implementation of Piecewise Constants Arguments. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  18. ElBialy, M.S.: Local contractions of Banach spaces and spectral gap conditions. J. Funct. Anal. 182, 108–150 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Farkas, G.: A Hartman-Grobman result for retarded functional differential equations with an application to the numerics around hyperbolic equilibria. Z. Angew. Math. Phys. 52, 421–432 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grobman, D.R.: The topological classification of vicinity of a singular point in n-dimensional space. Math. USSR-SB 56, 77–94 (1962)

    MathSciNet  Google Scholar 

  21. Guysinsky, M., Hasselblatt, B., Rayskin, V.: Differentiability of the Grobman–Hartman linearization. Discrete Contin. Dyn. Syst. 9, 979–984 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hartman, P.: On the local linearization of differential equation. Proc. Am. Math. Soc. 14, 568–573 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, Z.K., Xia, Y.H., Wang, X.H.: The existence and exponential attractivity of \(k\)-almost periodic sequence solution of discrete time neural networks. Nonlinear Dyn. 50, 13–26 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jiang, L.: Generalized exponential dichotomy and global linearization. J. Math. Anal. Appl. 315, 474–490 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiang, L.: Strongly topological linearization with generalized exponential dichotomy. Nonlinear Anal. 67, 1102–1110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kurzweil, J., Papaschinopoulos, G.: Topological equivalence and structural stability for linear difference equations. J. Differ. Equ. 89, 89–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin, F.: Hartmans linearization on nonautonomous unbounded system. Nonl. Anal. 66, 38–50 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. López-Fenner, J., Pinto, M.: On a Hartman linearization theorem for a class of ODE with impulse effect. Nonlinear Anal. 38, 307–325 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lu, K.: A Hartman-Grobman theorem for scalar reaction-diffusion equations. J. Differ. Equ. 93, 364–394 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. McSwiggen, P.: A geometric characterization of smooth linearizability. Michigan Math. J. 43, 321–335 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nakata, Y.: Global asymptotic stability beyond 3/2 type stability for a logistic equation with piecewise constants arguments. Nonlinear Anal. 73, 3179–3194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Palmer, K.J.: A generalization of Hartman’s linearization theorem. J. Math. Anal. Appl. 41, 752–758 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  33. Palmer, K.J.: Linearization near an integral manifold. J. Math. Anal. Appl. 51, 243–255 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  34. Papaschinopoulos, G.: Exponential dichotomy, topological equivalence and structural stability for differential equations with piecewise constant argument. Analysis 145, 239–247 (1994)

    MathSciNet  MATH  Google Scholar 

  35. Papaschinopoulos, G.: A linearization result for a differential equation with piecewise constant argument. Analysis 16, 161–170 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Papaschinopoulos, G.: On the integral manifold for a system of differential equations with piecewise constant argument. J. Math. Anal. Appl. 201, 75–90 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pinto, M., Robledo, G.: A Grobman-Hartman theorem for a differential equation with piecewise constant generalized argument. http://arxiv.org/abs/1506.00533

  38. Pinto, M.: Asymptotic equivalence of nonlinear and quasi linear differential equations with piecewise constant arguments. Math. Comp. Model. 49, 1750–1758 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pinto, M.: Cauchy and Green matrices type and stability in alternately advanced and delayed differential systems. J. Differ. Equ. Appl. 17, 721–735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pinto, M., Robledo, G.: Controllability and observability for a linear time varying system with piecewise constant delay. Acta Appl. Math. 136, 193–216 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pötzche, C.: Topological decoupling, linearization and perturbation on inhomogeneous time scales. J. Differ. Equ. 245, 1210–1242 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pugh, C.: On a theorm of P. Hartman. Am. J. Math 91, 363–367 (1969)

    Article  MATH  Google Scholar 

  43. Rodrigues, H.M., Solá-Morales, J.: Linearization of class \(C^1\) for contractions on Banach spaces. J. Differ. Equ. 201, 351–382 (2004)

    Article  MATH  Google Scholar 

  44. Rodrigues, H.M., Solá-Morales, J.: Smooth linearization for a saddle on Banach spaces. J. Dyn. Differ. Equ. 16, 767–793 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sell, G.: Smooth linearization near a fixed point. Am. J. Math. 107, 1035–1091 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Seuret, A.: A novel stability analysis of linear systems under asynchronous samplings. Automatica 48, 177–182 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shi, J., Xiong, K.: On Hartman’s linearization theorem and Palmer’s linearization theorem. J. Math. Anal. Appl. 92, 813–832 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sternberg, S.: Local \(C^n\) transformations of the real line. Duke Math. J. 24, 97–102 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sternberg, S.: Local contractions and a theorem of Poincaré. Am. J. Math. 79, 809–824 (1957)

    Article  MATH  Google Scholar 

  50. Veloz, T., Pinto, M.: Existence, computability and stability for solutions of the diffusion equation with general piecewise constant argument. J. Math. Anal. Appl. 426, 330–339 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wiener, J.: Generalized Solutions of Functional Differential Equations. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  52. Yuan, R.: The existence of almost periodic solutions of retarded differential equations with piecewise constant argument. Nonlinear Anal. 48, 1013–1032 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yuan, R., Hong, J.: The existence of almost periodic solutions for a class of differential equations with piecewise constant argument. Nonlinear Anal. 28, 1439–1450 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, W.M., Zhang, W.N.: \(C^1\) linearization for planar contractions. J. Funct. Anal. 260, 2043–2063 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang, W.M., Zhang, W.N.: Sharpness for \(C^1\) linearization of planar hyperbolic diffeomorphisms. J. Differ. Equ. 257, 4470–4502 (2014)

    Article  MATH  Google Scholar 

  56. Zhang, W.M., Zhang, W.N., Jarczyk, W.: Sharp regularity of linearization for \(C^{1,1}\) hyperbolic diffeomorphisms. Math. Ann. 358, 69–113 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Xia.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Data Availability Statement

All data are fully available without restriction.

Additional information

Changwu Zou was supported by the National Natural Science Foundation of China under Grant (No. 11471027) and Foundation of Fujiang Province Education Department under Grant (No. JAT160082)

Yonghui Xia was supported by the National Natural Science Foundation of China under Grant (No. 11671176), Natural Science Foundation of Zhejiang Province under Grant (No. LY15A010007), Natural Science Foundation of Fujian Province under Grant (No. 2018J01001)

Manuel Pinto was supported by FONDECYT Grant (Nos. 1120709 and 1170466 ).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, C., Xia, Y., Pinto, M. et al. Boundness and Linearisation of a Class of Differential Equations with Piecewise Constant Argument. Qual. Theory Dyn. Syst. 18, 495–531 (2019). https://doi.org/10.1007/s12346-018-0297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-018-0297-9

Keywords

Mathematics Subject Classification

Navigation