Skip to main content
Log in

Every Period Annulus is Both Reversible and Symmetric

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We prove that for every planar differential system with a period annulus there exists a unique involution \(\sigma \) such that the system is \(\sigma \)-symmetric. We also prove that, given a system with a period annulus and a global section \(\delta \), there exist a unique involution \(\sigma \) such that the system is \(\sigma \)-reversible and \(\delta \) is the fixed points curve of \(\sigma \). As a consequence, every system with a period annulus admits infinitely many reversibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Algaba, A., Checa, I., Garcia, C., Gamero, E.: On orbital-reversibility for a class of planar dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 20(1), 229–239 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blows, T.R., Lloyd, N.G.: The number of limit cycles of certain polynomial differential equations. Proc. R. Soc. Edinb. Sect. A 98, 215–239 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berthier, M., Moussu, R.: Réversibilité et classification des centres nilpotents. Ann. Inst. Fourier 44(2), 465–494 (1994). (Grenoble)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonorino, L.P., Brietzke, E.H.M., Lukaszczyk, J.P., Taschetto, C.A.: Properties of the period function for some Hamiltonian systems and homogeneous solutions of a semilinear elliptic equation. J. Differ. Equ. 214(1), 156–175 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cabada, A.: Green’s Functions in the Theory of Ordinary Differential Equations. Springer, New York (2014)

    Book  MATH  Google Scholar 

  6. Chen, A., Li, J., Huang, W.: The monotonicity and critical periods of periodic waves of the \(\phi ^6\) field model. Nonlinear Dyn. 63, 205–215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chicone, C.: Ordinary Differential Equations with Applications, Texts in Applied Mathematics, vol. 34. Springer, New York (1999)

    MATH  Google Scholar 

  8. Conti, R.: Centers of planar polynomial systems. A review. Le Mat. 53, 207–240 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Chavarriga, J., Sabatini, M.: A survey of isochronous centers. Qual. Theory Dyn. Syst. 1(1), 1–70 (1999)

    Article  MathSciNet  Google Scholar 

  10. Collins, C.B.: Poincaré’s reversibility condition. J. Math. Anal. Appl. 259(1), 168–187 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garijo, A., Villadelprat, J.: Algebraic and analytical tools for the study of the period function. J. Differ. Equ. 257(7), 2464–2484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giné, J., Maza, S.: The reversibility and the center problem. Nonlinear Anal. 74(2), 695–704 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liang, H., Zhao, Y.: Limit cycles bifurcated from a class of quadratic reversible center of genus one. J. Math. Anal. Appl. 391(1), 240–254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, C.: The cyclicity of period annuli of a class of quadratic reversible systems with two centers. J. Differ. Equ. 252(10), 5260–5273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, C., Han, M.: Bifurcation of critical periods from the reversible rigidly isochronous centers. Nonlinear Anal. 95, 388–403 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Milnor, J.W.: Topology from the Differentiable Viewpoint. Princeton University Press, Princeton, NJ (1997)

    MATH  Google Scholar 

  17. Motreanu, D., Motreanu, V.V., Papageorgiou, N.: Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. Springer, New York (2014)

    Book  MATH  Google Scholar 

  18. Romanovski, V.G.: Time-reversibility in 2-dim systems. Open Syst. Inf. Dyn. 15(4), 359–370 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Computational Algebra Approach. Birkhäuser Boston Inc., Boston (2009)

    MATH  Google Scholar 

  20. Sabatini, M.: Centers with equal period functions. J. Math. Anal. Appl. 430(1), 296–305 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sibirsky, K.S.: Introduction to the Algebraic Theory of Invariants of Differential Equations, Translated from the Russian. Nonlinear Science: Theory and Applications. Manchester University Press, Manchester (1988)

    Google Scholar 

  22. von Wahl, W.: Remarks on lines of reversibility for Poincaré’s centre problem. Analysis 29, 259–264 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Zoladek, H.: The classification of reversible cubic systems with center. Topol. Methods Nonlinear Anal. 4(1), 79–136 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Sabatini.

Additional information

This paper was partially supported by the GNAMPA, Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni. The results of this paper were presented at the meeting AQTDE2015, held in Tarragona, April 20–24, 2015. A preliminary version can be found at http://arxiv.org/abs/1504.04530.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabatini, M. Every Period Annulus is Both Reversible and Symmetric. Qual. Theory Dyn. Syst. 16, 175–185 (2017). https://doi.org/10.1007/s12346-015-0183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-015-0183-7

Keywords

Navigation