Skip to main content
Log in

Hilbert’s Sixteenth Problem for Polynomial Liénard Equations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This article reports on the survey talk ‘Hilbert’s Sixteenth Problem for Liénard equations,’ given by the author at the Oberwolfach Mini-Workshop ‘Algebraic and Analytic Techniques for Polynomial Vector Fields.’ It is written in a way that it is accessible to a public with heterogeneous mathematical background. The article reviews recent developments and techniques used in the study of Hilbert’s 16th problem where the main focus is put on the subclass of polynomial vector fields derived from the Liérd equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bobienski M., Zoladek H.: A counterexample to a multidimensional version of the weakened Hilbert’s 16th problem. Moskow Math. J. 7, 1–20 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Christopher, C.J.: Estimating limit cycles bifurcations from centers. In: Trends in Mathematics: Differential Equations with Symbolic Computation, pp. 23–35. Birkhäuser Verlag, Basel (2006)

  3. Caubergh M., Dumortier F.: Hopf-Takens bifurcations and centres. J. Differ. Equ. 202, 1–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caubergh M., Dumortier F.: Hilbert’s 16th problem for classical Liénard equations of even degree. J. Differ. Equ. 244, 1359–1395 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caubergh M., Dumortier F., Luca S.: Cyclicity of unbounded semi-hyperbolic 2-saddle cycles in polynomial Liénard systems. Discrete Contin. Dyn. Syst. 27, 963–980 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caubergh M., Françoise J.P.: Generalized Liénard equations, cyclicity and Hopf-Takens bifurcations. Qual. Theory Dyn. Syst. 5, 195–222 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christopher C.J., Lloyd N.G.: Polynomial systems: a lower bound for the Hilbert numbers. Proc. Math. Phys. Sci. 450, 219–224 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coppel, W.A.: Some quadratic systems with at most one limit cycle. Dynamics Reported, vol. 2, pp. 61–68. Wiley, New York (1988)

  9. Chen, L., Wang, M.: Relative position and number of limit cycles of a quadratic differential system. Acta Math. Sin. 22, 751–758 (1979, in Chinese)

    Google Scholar 

  10. De Maesschalck P., Dumortier F.: Classical Liénard equations of degree n ≥ 6 can have [(n−1) /2] + 2 limit cycles. J. Differ. Equ. 250, 2162–2176 (2010)

    Article  MathSciNet  Google Scholar 

  11. Dumortier F., Herssens C.: Polynomial Liénard equations near infinity. J. Differ. Equ. 153, 1–29 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dumortier F., Li C.: On the uniqueness of limit cycles surrounding one or more singularities for Liénard equations. Nonlinearity 9, 1489–1500 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dumortier F., Li C.: Quadratic Liénard equations with quadratic damping. J. Differ. Equ. 139, 41–59 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dumortier F., Li C.: Perturbation from an elliptic Hamiltonian of degree four: (IV) figure eight-loop. J. Differ. Equ. 188, 512–554 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dumortier F., Panazzolo D., Roussarie R.: More limit cycles than expected in Liénard equations. Proc. Am. Math. Soc. 135, 1895–1904 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dumortier F., Roussarie R.: Birth of canard cycles. Discrete Contin. Dyn. Syst. 2, 723–781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dumortier F., Rousseau C.: Cubic Liénard equations with linear damping. Nonlinearity 3, 1015–1039 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ilyashenko Yu.S.: Centennial history of Hilbert’s 16th problem. Bull. Am. Math. Soc. (N.S.) 39, 301–354 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolutsky G.: An upper estimate for the number of limit cycles of even-degree Liénard equations in the focus case. J. Dyn. Control Syst. 17, 231–241 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li J., Chan H.S.Y., Chung K.W.: Some lower bounds for H(n) in Hilbert’s 16th problem. Qual. Theory Differ. Equ. 3, 345–360 (2003)

    MathSciNet  Google Scholar 

  21. Lloyd N.G., Lynch S.: Small-amplitude limit cycles of certain Liénard systems. Proc. R. Soc. Lond. A 418, 199–208 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, C., Llibre, J.: Uniqueness of Limit Cycle for Liénard Equations of Degree Four. Preprint (2011)

  23. Li C., Liu C., Yang J.: A cubic system with thirteen limit cycles. J. Differ. Equ. 246, 3609–3619 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lins, A., de Melo, W., Pugh, C.C.: On Liénard’s equation. Lecture Notes in Mathematics, vol. 597, pp. 335–357, Springer, Berlin (1977)

  25. Llibre J., Mereu A.C., Teixeira M.A.: Limit cycles of the generalized polynomial Liénard differential equations. Math. Proc. Cambridge Philos. Soc. 148, 363–383 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li J.: Hilbert’s 16th Problem and bifurcations of planar polynomial vector fields. Int. J. Bifurc. Chaos 13, 47–106 (2003)

    Article  MATH  Google Scholar 

  27. Li J., Zhang M., Li S.: Bifurcations of limit cycles in a Z 2 -equivariant planar polynimial vector field of degree 7. Int. J. Bifurc. Chaos 16, 925–943 (2006)

    Article  MATH  Google Scholar 

  28. Roussarie, R.: A note on the finite cyclicity property and Hilbert’s 16th problem. In: Bamon, R., Labarca, R., Palis, J. (eds.) Lecture Notes in Mathematics, vol. 1331. Dynamical Systems-Valparaiso 1986 (1988)

  29. Roussarie, R.: Bifurcations of planar vector fields and Hilbert’s sixteenth problem. In: Progress in Mathematics, vol. 164. Birkhauser-Verlag, Basel (1998)

  30. Roussarie R.: Putting a boundary to the space of Liénard Equations. Discrete Contin. Dyn. Syst. 17, 441–448 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Smale S.: Mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Songling S.: A concrete example of the existence of four limit cycles for plane quadratic systems. Scientia Sin 23, 154–158 (1980)

    Google Scholar 

  33. Wu Y., Gao Y., Han M.: On the number and distributions of limit cycles in a quintic planar vector field. Int. J. Bifurc. Chaos Appl. Sci. Eng. 18, 1939–1955 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang S., Yu P.: Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation. Chaos Solitons Fractals 26, 1317–1335 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang J., Han M., Romanovski V.G.: Limit cycle bifurcations of some Liénard systems. J. Math. Anal. Appl. 336, 242–255 (2010)

    Article  MathSciNet  Google Scholar 

  36. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equations. American Mathematical Society, Providence (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Caubergh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caubergh, M. Hilbert’s Sixteenth Problem for Polynomial Liénard Equations. Qual. Theory Dyn. Syst. 11, 3–18 (2012). https://doi.org/10.1007/s12346-012-0068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-012-0068-y

Keywords

Mathematics Subject Classification (2000)

Navigation