Skip to main content

Advertisement

Log in

CDC20 and PTTG1 are Important Biomarkers and Potential Therapeutic Targets for Metastatic Prostate Cancer

  • Original Research
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Introduction

Metastatic prostate cancer (mPCa) is responsible for most prostate cancer (PCa) deaths worldwide. The present study aims to explore the molecular differences between mPCa and PCa.

Methods

The authors downloaded GSE6752, GSE6919, and GSE32269 from the Gene Expression Omnibus and employed integrated analysis to identify differentially expressed genes (DEGs) between mPCa and PCa. Functional and pathway-enrichment analyses were performed, and a protein–protein interaction (PPI) network and modules were constructed. Clinical mPCa specimens were collected to verify the results by performing RT-qPCR. The Cancer Genome Atlas database was used to conduct a survival analysis, and an immunohistochemical assay was performed. The invasion ability of PCa cells was verified by Transwell assay.

Results

One-hundred six consistently DEGs were found in mPCa compared with PCa. DEGs significantly enriched the positive regulation of cell proliferation, cell division, and cell adhesion in small cell lung cancer and PCa. Cell division, nucleoplasm, and cell cycle were selected from the PPI network, and the top 10 hub genes were selected. CDC20 and PTTG1 with genetic alterations were significantly associated with poorer disease-free survival. Immunohistochemical assay results showed that the expression levels of CDC20 and PTTG1 in mPCa were higher than those in PCa. The results of the migration assay indicated that CDC20 and PTTG1 could enhance the migration ability of PCa cells.

Conclusion

The present study revealed that CDC20 and PTTG1 contribute more to migration, progression, and poorer prognoses in mPCa compared with PCa. CDC20 and PTTG1 could represent therapeutic targets in mPCa medical research and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Dai JY, Wang B, Wang X, Cheng A, Kolb S, Stanford JL, Wright JL. Vigorous physical activity is associated with lower risk of metastatic-lethal progression in prostate cancer and hypomethylation in the CRACR2A gene. Cancer Epidemiol Biomark Prev. 2019;28(2):258–64.

    Article  CAS  Google Scholar 

  3. Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JMC, Papaemmanuil E, Brewer DS, Kallio HML, Högnäs G, Annala M, Kivinummi K, Goody V, Latimer C, O’Meara S, Dawson KJ, Isaacs W, Emmert-Buck MR, Nykter M, Foster C, Kote-Jarai Z, Easton D, Whitaker HC, ICGC Prostate Group, Neal DE, Cooper CS, Eeles RA, Visakorpi T, Campbell PJ, McDermott U, Wedge DC, Bova GS. The evolutionary history of lethal metastatic prostate cancer. Nature. 2015;520(7547):353–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Torrano V, Valcarcel-Jimenez L, Cortazar AR, Liu X, Urosevic J, Castillo-Martin M, Fernández-Ruiz S, Morciano G, Caro-Maldonado A, Guiu M, Zúñiga-García P, Graupera M, Bellmunt A, Pandya P, Lorente M, Martín-Martín N, Sutherland JD, Sanchez-Mosquera P, Bozal-Basterra L, Zabala-Letona A, Arruabarrena-Aristorena A, Berenguer A, Embade N, Ugalde-Olano A, Lacasa-Viscasillas I, Loizaga-Iriarte A, Unda-Urzaiz M, Schultz N, Aransay AM, Sanz-Moreno V, Barrio R, Velasco G, Pinton P, Cordon-Cardo C, Locasale JW, Gomis RR, Carracedo A. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat Cell Biol. 2016;18(6):645–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gourd E. Enzalutamide and metastasis risk in prostate cancer. Lancet Oncol. 2018;19(8):e387.

    Article  PubMed  Google Scholar 

  6. Savage N. Metastasis: resistance fighters. Nature. 2015;528(7582):S128–9.

    Article  CAS  PubMed  Google Scholar 

  7. Fatemipour M, Nahand JS, Fard Azar ME, Baghi HB, Taghizadieh M, Sorayyayi S, Hussen BM, Mirzaei H, Moghoofei M, Bokharaei-Salim F. Human papillomavirus and prostate cancer: The role of viral expressed proteins in the inhibition of anoikis and induction of metastasis. Microb Pathog. 2021;152:104576.

    Article  CAS  PubMed  Google Scholar 

  8. Guo Y, Bao Y, Ma M, Yang W. Identification of key candidate genes and pathways in colorectal cancer by integrated bioinformatical analysis. Int J Mol Sci. 2017;18(4):722.

    Article  PubMed Central  Google Scholar 

  9. Xiao Q, Sun Y, Dobi A, Srivastava S, Wang W, Srivastava S, Ji Y, Hou J, Zhao GP, Li Y, Li H. Systematic analysis reveals molecular characteristics of ERG-negative prostate cancer. Sci Rep. 2018;8(1):12868.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sadri Nahand J, Esghaei M, Hamidreza Monavari S, Moghoofei M, Jalal Kiani S, Mostafaei S, Mirzaei H, Bokharaei-Salim F. The assessment of a possible link between HPV-mediated inflammation, apoptosis, and angiogenesis in prostate cancer. Int Immunopharmacol. 2020;88:106913.

    Article  CAS  PubMed  Google Scholar 

  11. Wang A, Zhang G. Differential gene expression analysis in glioblastoma cells and normal human brain cells based on GEO database. Oncol Lett. 2017;14(5):6040–4.

    PubMed  PubMed Central  Google Scholar 

  12. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. White NM, Zhao SG, Zhang J, Rozycki EB, Dang HX, McFadden SD, Eteleeb AM, Alshalalfa M, Vergara IA, Erho N, Arbeit JM, Karnes RJ, Den RB, Davicioni E, Maher CA. Multi-institutional analysis shows that low PCAT-14 expression associates with poor outcomes in prostate cancer. Eur Urol. 2017;71(2):257–66.

    Article  CAS  PubMed  Google Scholar 

  14. Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W, Michalopoulos G, Becich M, Monzon FA. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer. 2007;12(7):64.

    Article  Google Scholar 

  15. Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, McDonald C, Thomas R, Dhir R, Finkelstein S, Michalopoulos G, Becich M, Luo JH. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol. 2004;22(14):2790–9.

    Article  CAS  PubMed  Google Scholar 

  16. Cai C, Wang H, He HH, Chen S, He L, Ma F, Mucci L, Wang Q, Fiore C, Sowalsky AG, Loda M, Liu XS, Brown M, Balk SP, Yuan X. ERG induces androgen receptor-mediated regulation of SOX9 in prostate cancer. J Clin Invest. 2013;123(3):1109–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD. PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 2010;38(Database issue):D204–10.

    Article  CAS  PubMed  Google Scholar 

  18. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41(Database issue):D808–15.

    CAS  PubMed  Google Scholar 

  19. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Attard G, Parker C, Eeles RA, Schröder F, Tomlins SA, Tannock I, Drake CG, de Bono JS. Prostate cancer. Lancet. 2016;387(10013):70–82.

    Article  PubMed  Google Scholar 

  21. Wong MC, Goggins WB, Wang HH, Fung FD, Leung C, Wong SY, Ng CF, Sung JJ. Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 countries. Eur Urol. 2016;70(5):862–74.

    Article  PubMed  Google Scholar 

  22. Hodson R. Prostate cancer: 4 big questions. Nature. 2015;528(7582):S137.

    Article  CAS  PubMed  Google Scholar 

  23. Keysar SB, Le PN, Miller B, Jackson BC, Eagles JR, Nieto C, Kim J, Tang B, Glogowska MJ, Morton JJ, Padilla-Just N, Gomez K, Warnock E, Reisinger J, Arcaroli JJ, Messersmith WA, Wakefield LM, Gao D, Tan AC, Serracino H, Vasiliou V, Roop DR, Wang XJ, Jimeno A. Regulation of head and neck squamous cancer stem cells by PI3K and SOX2. J Natl Cancer Inst. 2016;109(1):djw189.

    Article  PubMed Central  Google Scholar 

  24. Na H, Liu X, Li X, Zhang X, Wang Y, Wang Z, Yuan M, Zhang Y, Ren S, Zuo Y. Novel roles of DC-SIGNR in colon cancer cell adhesion, migration, invasion, and liver metastasis. J Hematol Oncol. 2017;10(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kargl J, Andersen L, Hasenöhrl C, Feuersinger D, Stančić A, Fauland A, Magnes C, El-Heliebi A, Lax S, Uranitsch S, Haybaeck J, Heinemann A, Schicho R. GPR55 promotes migration and adhesion of colon cancer cells indicating a role in metastasis. Br J Pharmacol. 2016;173(1):142–54.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang S, Chang L, Alfieri C, Zhang Z, Yang J, Maslen S, Skehel M, Barford D. Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature. 2016;533(7602):260–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davidson G, Niehrs C. Emerging links between CDK cell cycle regulators and Wnt signaling. Trends Cell Biol. 2010;20(8):453–60.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang J, Tian XJ, Xing J. Signal transduction pathways of EMT induced by TGF-β, SHH, and WNT and their crosstalks. J Clin Med. 2016;5(4):41.

    Article  PubMed Central  Google Scholar 

  29. Aghdam AM, Amiri A, Salarinia R, Masoudifar A, Ghasemi F, Mirzaei H. MicroRNAs as diagnostic, prognostic, and therapeutic biomarkers in prostate cancer. Crit Rev Eukaryot Gene Expr. 2019;29(2):127–39.

    Article  PubMed  Google Scholar 

  30. Hou Y, Zhu Q, Li Z, Peng Y, Yu X, Yuan B, Liu Y, Liu Y, Yin L, Peng Y, Jiang Z, Li J, Xie B, Duan Y, Tan G, Gulina K, Gong Z, Sun L, Fan X, Li X. The FOXM1-ABCC5 axis contributes to paclitaxel resistance in nasopharyngeal carcinoma cells. Cell Death Dis. 2017;8(3):e2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu X, Wang H, Lian Y, Chen L, Gu L, Wang J, Huang Y, Deng M, Gao Z, Huang Y. GTSE1 promotes cell migration and invasion by regulating EMT in hepatocellular carcinoma and is associated with poor prognosis. Sci Rep. 2017;7(1):5129.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Qi J, Yu Y, Akilli Öztürk Ö, Holland JD, Besser D, Fritzmann J, Wulf-Goldenberg A, Eckert K, Fichtner I, Birchmeier W. New Wnt/β-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals. Gut. 2016;65(10):1690–701.

    Article  CAS  PubMed  Google Scholar 

  33. Yoon CH, Kim MJ, Lee H, Kim RK, Lim EJ, Yoo KC, Lee GH, Cui YH, Oh YS, Gye MC, Lee YY, Park IC, An S, Hwang SG, Park MJ, Suh Y, Lee SJ. PTTG1 oncogene promotes tumor malignancy via epithelial to mesenchymal transition and expansion of cancer stem cell population. J Biol Chem. 2012;287(23):19516–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li H, Yin C, Zhang B, Sun Y, Shi L, Liu N, Liang S, Lu S, Liu Y, Zhang J, Li F, Li W, Liu F, Sun L, Qi Y. PTTG1 promotes migration and invasion of human non-small cell lung cancer cells and is modulated by miR-186. Carcinogenesis. 2013;34(9):2145–55.

    Article  CAS  PubMed  Google Scholar 

  35. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  36. Wondergem B, Zhang Z, Huang D, Ong CK, Koeman J, Hof DV, Petillo D, Ooi A, Anema J, Lane B, Kahnoski RJ, Furge KA, Teh BT. Expression of the PTTG1 oncogene is associated with aggressive clear cell renal cell carcinoma. Cancer Res. 2012;72(17):4361–71.

    Article  CAS  PubMed  Google Scholar 

  37. Manchado E, Guillamot M, de Cárcer G, Eguren M, Trickey M, García-Higuera I, Moreno S, Yamano H, Cañamero M, Malumbres M. Targeting mitotic exit leads to tumor regression in vivo: modulation by Cdk1, Mastl, and the PP2A/B55α, δ phosphatase. Cancer Cell. 2010;18(6):641–54.

    Article  CAS  PubMed  Google Scholar 

  38. Kidokoro T, Tanikawa C, Furukawa Y, Katagiri T, Nakamura Y, Matsuda K. CDC20, a potential cancer therapeutic target, is negatively regulated by p53. Oncogene. 2008;27(11):1562–71.

    Article  CAS  PubMed  Google Scholar 

  39. Horning AM, Wang Y, Lin CK, Louie AD, Jadhav RR, Hung CN, Wang CM, Lin CL, Kirma NB, Liss MA, Kumar AP, Sun L, Liu Z, Chao WT, Wang Q, Jin VX, Chen CL, Huang TH. Single-cell RNA-seq reveals a subpopulation of prostate cancer cells with enhanced cell-cycle-related transcription and attenuated androgen response. Cancer Res. 2018;78(4):853–64.

    Article  CAS  PubMed  Google Scholar 

  40. Shimizu Y, Tamada S, Kato M, Hirayama Y, Takeyama Y, Iguchi T, Sadar MD, Nakatani T. Androgen receptor splice variant 7 drives the growth of castration resistant prostate cancer without being involved in the efficacy of taxane chemotherapy. J Clin Med. 2018;7(11):444.

    Article  CAS  PubMed Central  Google Scholar 

  41. Li K, Mao Y, Lu L, Hu C, Wang D, Si-Tu J, Lu M, Peng S, Qiu J, Gao X. Silencing of CDC20 suppresses metastatic castration-resistant prostate cancer growth and enhances chemosensitivity to docetaxel. Int J Oncol. 2016;49(4):1679–85.

    Article  CAS  PubMed  Google Scholar 

  42. Castilla C, Flores ML, Medina R, Pérez-Valderrama B, Romero F, Tortolero M, Japón MA, Sáez C. Prostate cancer cell response to paclitaxel is affected by abnormally expressed securin PTTG1. Mol Cancer Ther. 2014;13(10):2372–83.

    Article  CAS  PubMed  Google Scholar 

  43. Huang S, Liu Q, Liao Q, Wu Q, Sun B, Yang Z, Hu X, Tan M, Li L. Interleukin-6/signal transducer and activator of transcription 3 promotes prostate cancer resistance to androgen deprivation therapy via regulating pituitary tumor transforming gene 1 expression. Cancer Sci. 2018;109(3):678–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang Z, Jin B, Jin Y, Huang S, Niu X, Mao Z, Xin D. PTTG1, a novel androgen responsive gene is required for androgen-induced prostate cancer cell growth and invasion. Exp Cell Res. 2017;350(1):1–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the participants of the study.

Funding

No external funding received to conduct this study. The Rapid Service fee was funded by the corresponding author. This work was supported by grants from The Qinhuangdao Science and Technology Research and Development Foundation (202004A041; 201902A166; 201902A216; 201805A063).

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Authorship Contributions

DL, SZX, WDP, ZJD, LJQ, WBB, and MWT conceived the idea and conceptualised the study. LLY and DYL collected the data. ZJD, LJQ, WBB, and MWT analyzed the data. DL, SZX, and WDP, drafted the manuscript, and then ZL, ZLM, and ZYM reviewed the manuscript. All authors read and approved the final draft.

Disclosures

The authors Liang Dai, Zi-Xuan Song, Da-Peng Wei, Ji-Dong Zhang, Jun-Qiang Liang, Bai-Bing Wang, Wang-Teng Ma, Li-Ying Li, Yin-Lu Dang, Liang Zhao, Li-Min Zhang, and Yu-Ming Zhao have nothing to disclose.

Compliance with Ethics Guidelines

This study was approved by the Ethics Committee of the Second Hospital of Tianjin Medical University (no. KY2018K077). Written informed consent was obtained from all patients, and the study was conducted in accordance with the Declaration of Helsinki.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Dai or Yu-Ming Zhao.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Song, ZX., Wei, DP. et al. CDC20 and PTTG1 are Important Biomarkers and Potential Therapeutic Targets for Metastatic Prostate Cancer. Adv Ther 38, 2973–2989 (2021). https://doi.org/10.1007/s12325-021-01729-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-021-01729-3

Keywords

Navigation