Skip to main content
Log in

Creatine Phosphate: Pharmacological and Clinical Perspectives

  • Review
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Since the 1970s, extensive experimental and clinical research has demonstrated that relevant reductions of creatine phosphate (CrP) or phosphocreatine availability occur in a wide spectrum of pathophysiological situations. A decrease in intracellular concentrations of creatine (Cr) and CrP results in a hypodynamic state of cardiac and skeletal muscle pathology. Many experimental and clinical studies have evaluated the possibility to improve cardiac and skeletal muscle performance by exogenous administration of CrP. Furthermore, many experimental studies have shown that CrP may play two important roles in the regulation of muscle energetics and work. First, CrP maintains local adenosine triphosphate pools and stabilizes cellular membranes due to electrostatic interactions with phospholipids. The second mechanism decreases the production of lysophosphoglycerides in hypoxic hearts, protects the sarcolemma of cardiac cells against ischemic damage, decreases the frequency of arrhythmias, and increases post-ischemic recovery of contractile function. Recent research on CrP has demonstrated positive therapeutic results in various clinical applications. These benefits have been applied in several pathological conditions, such as heart failure, acute myocardial ischemia, chronic ischemic heart disease, cardiac surgery, skeletal muscle hypotonotrophy, and cerebral ischemia. This review describes the CrP shuttle, pathophysiological basis of the supplementation of CrP, and its therapeutic effects in multiple clinical conditions. The major aim is to summarize results of the intense research carried out over 40 years to provide evidence to support the adjunctive use of CrP in many pathological conditions that may target cellular energy impairment; thus, increasing energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walker JB. Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol. 1979;50:117–242.

    Google Scholar 

  2. Ennor AH, Morrison JF. Biochemistry of the phosphagens and related guanidines. Physiol Rev. 1958;38:631–674.

    PubMed  CAS  Google Scholar 

  3. Bessman SP, Geiger PJ. Transport of energy in muscle: the phosphorylcreatine shuttle. Science. 1981;211:448–452.

    Article  PubMed  CAS  Google Scholar 

  4. Bessman SP, Mohan C. Phosphocreatine, exercise, protein synthesis, and insulin. In: PP De Deyn, B. Marescau, V. Stalon an IA Qureshi, eds. Guanidino Compounds in Biology and Medicine. London: John Libbey and Company; 1992:181–186.

    Google Scholar 

  5. Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res. 2004;95:135–145.

    Article  PubMed  CAS  Google Scholar 

  6. Taegtmeyer H, Wilson CR, Razeghi P, Sharma S. Metabolic energetics and genetics in the heart. Ann N Y Acad Sci. 2005;1047:208–218.

    Article  PubMed  CAS  Google Scholar 

  7. Ingwall JS. Energy metabolism in heart failure and remodelling. Cardiovasc Res. 2009;81:412–419.

    Article  PubMed  CAS  Google Scholar 

  8. Saks VA, Ventura-Clapier R, Huchua ZA, Preobrazhensky AN, Emelin IV. A creatine kinase in regulation of heart function and metabolism. I. Further evidence for compartmentation of adenine nucleotides in cardiac myofibrillar and sarcolemmal coupled ATPase-creatine kinase systems. Biochim Biophys Acta. 1984;803:254–264.

    Article  PubMed  CAS  Google Scholar 

  9. Carpenter CL, Mohan C, Bessman SP. Inhibition of protein and lipid synthesis in muscle by 2,4-dinitrofluorobenzene, an inhibitor of creatine phosphokinase. Biochem Biophys Res Commun. 1983;111:884–889.

    Article  PubMed  CAS  Google Scholar 

  10. Hearse DJ. Oxygen deprivation and early myocardial contractile failure: a reassessment of the possible role of adenosine triphosphate. Am J Cardiol. 1979;44:1115–1121.

    Article  PubMed  CAS  Google Scholar 

  11. Whitman GJ, Kieval RS, Seeholzer S, et al. Recovery of left ventricular function after graded cardiac ischemia as predicted by myocardial P-31 nuclear magnetic resonance. Surgery. 1985;97:428–435.

    PubMed  CAS  Google Scholar 

  12. Pool PE, Spann JF Jr, Buccino RA, Sonnenblick EH, Braunwald E. Myocardial high energy phosphate stores in cardiac hypertrophy and heart failure. Circ Res. 1967;21:365–375.

    CAS  Google Scholar 

  13. Ye Y, Gong G, Ochiai K, Liu J, Zhang J. High-energy phosphate metabolism and creatine kinase in failing hearts: a new porcine model. Circulation. 2001;103:1570–1576.

    PubMed  CAS  Google Scholar 

  14. Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G. Regional myocardial metabolism of high energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med. 1990;323:1593–1600.

    Article  PubMed  CAS  Google Scholar 

  15. Yabe T, Mitsunami K, Okada M, et al. Detection of myocardial ischemia by 31P magnetic resonance spectroscopy during handgrip exercise. Circulation. 1994;89:1709–1716.

    PubMed  CAS  Google Scholar 

  16. Yabe T, Mitsunami K, Inubushi T, Kinoshita M. Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by 31P magnetic resonance spectroscopy. Circulation. 1995;92:15–23.

    PubMed  CAS  Google Scholar 

  17. Conway MA, Allis J, Ouwerkerk R, et al. Detection of low creatine phosphate to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet. 1991;338:973–976.

    Article  PubMed  CAS  Google Scholar 

  18. Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G. Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J. 1991;122:795–801.

    Article  PubMed  CAS  Google Scholar 

  19. Neubauer S, Krahe T, Schindler R, et al. 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation. 1992;86:1810–1818.

    PubMed  CAS  Google Scholar 

  20. Naveri HK, Leinonen H, Kiilavuori K, Härkönen M. Skeletal muscle lactate accumulation and creatine phosphate depletion during heavy exercise in congestive heart failure. Cause of limited exercise capacity? Eur Heart J. 1997;18:1937–1945

    PubMed  CAS  Google Scholar 

  21. Neubauer S, Horn M, Cramer M, et al. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation. 1997;96:2190–2196.

    PubMed  CAS  Google Scholar 

  22. Chida K, Otani H, Kohzuki M, et al. The relationship between plasma BNP level and the myocardial phosphocreatine/adenosine triphosphate ratio determined by phosphorus-31 magnetic resonance spectroscopy in patients with dilated cardiomyopathy. Cardiology. 2006;106:132–136.

    Article  PubMed  CAS  Google Scholar 

  23. Starling RC, Hammer DF, Altschuld RA. Human myocardial ATP content and in vivo contractile function. Mol Cell Biochem. 1998;180:171–177.

    Article  PubMed  CAS  Google Scholar 

  24. Nascimben L, Ingwall JS, Pauletto P, et al. Creatine kinase system in failing and nonfailing human myocardium. Circulation. 1996;94:1894–1901.

    PubMed  CAS  Google Scholar 

  25. Tian R, Ingwall JS. The molecular energetics of the failing heart from animal models-small animal models. Heart Failure Rev. 1999;4:235–253.

    Article  Google Scholar 

  26. Zhang J, Bache RJ. The molecular energetics of the failing heart from animal models-large animal models. Heart Failure Rev. 1999;4:255–267.

    Article  CAS  Google Scholar 

  27. Ingwall JS, Kramer MF, Fifer MA, et al. The creatine kinase system in normal and diseased human myocardium. N Engl J Med. 1985;313:1050–1054.

    Article  PubMed  CAS  Google Scholar 

  28. Katz AM. Is the failing heart energy depleted? Cardiol Clin. 1998;16:633–644, viii.

    Article  PubMed  CAS  Google Scholar 

  29. Nakae I, Mitsunami K, Omura T, et al. Proton magnetic resonance spectroscopy can detect creatine depletion associated with the progression of heart failure in cardiomyopathy. J Am Coll Cardiol. 2003;42:1587–1593.

    Article  PubMed  CAS  Google Scholar 

  30. van Bilsen M, Smeets PJ, Gilde AJ, van der Vusse GJ. Metabolic remodelling of the failing heart: the cardiac burn-out syndrome? Cardiovasc Res. 2004;61:218–226.

    Article  PubMed  CAS  Google Scholar 

  31. Neubauer S. The failing heart-an engine out of fuel. N Engl J Med. 2007;356:1140–1151.

    Article  PubMed  Google Scholar 

  32. Editorial: Skeletal muscle in heart failure. Lancet. 1992;340:1383–1384.

    Article  Google Scholar 

  33. Drexler H, Münzel T, Riede U, Just H. Adaptive changes in the periphery and their therapeutic consequences. Am J Cardiol. 1991;67:29C–34C; discussion 34C–35C.

    Article  PubMed  CAS  Google Scholar 

  34. Drexler H. Skeletal muscle failure in heart failure. Circulation. 1992;85:1364–1373.

    Google Scholar 

  35. Drexler H, Coats AJ. Explaining fatigue in congestive heart failure. Annu Rev Med. 1996;47:241–256.

    Article  PubMed  CAS  Google Scholar 

  36. Massie BM, Conway M, Rajagopalan B, et al. Skeletal muscle metabolism during exercise under ischemic conditions in congestive heart failure. Evidence for abnormalities unrelated to blood flow. Circulation. 1988;78:320–326.

    Article  PubMed  CAS  Google Scholar 

  37. Mancini DM, Walter G, Reichek N, et al. Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation. 1992;85:1364–1373.

    PubMed  CAS  Google Scholar 

  38. Mancini DM, Wilson JR, Bolinger L, et al. In vivo magnetic resonance spectroscopy measurement of deoxymyoglobin during exercise in patients with heart failure. Demonstration of abnormal muscle metabolism despite adequate oxygenation. Circulation. 1994;90:500–508.

    PubMed  CAS  Google Scholar 

  39. Lunde PK, Sjaastad I, Schiøtz Thorud HM, Sejersted OM. Skeletal muscle disorders in heart failure. Acta Physiol Scand. 2001;171:277–294.

    Article  PubMed  CAS  Google Scholar 

  40. Parratt JR, Marshall RJ. The response of isolated cardiac muscle to acute anoxia: protective effect of adenosine triphosphate and creatine phosphate. J Pharm Pharmacol. 1974;26:427–433.

    Article  PubMed  CAS  Google Scholar 

  41. Marshall RJ, Parratt JR. Reduction in ventricular arrhythmias following acute coronary artery ligation in the dog after the administration of creatine phosphate. Naunyn Schmiedeberg’s Arch Pharmacol. 1974;281:437–441.

    Article  CAS  Google Scholar 

  42. Fagbemi O, Kane KA, Parratt JR. Creatine phosphate suppresses ventricular arrhythmias resulting from coronary artery ligation. J Cardiovasc Pharmacol. 1982;4:53–58.

    Article  PubMed  CAS  Google Scholar 

  43. Rosenshtraukh LV, Saks VA, Anyukhovsky EP, Beloshapko GG, Yushmanova AV. The antiarrhythmic action of creatine phosphate in acute myocardial ischemia. Biochem Med. 1985;34:120–128.

    Article  PubMed  CAS  Google Scholar 

  44. Hearse DJ, Tanaka K, Crome R, Manning AS. Creatine phosphate and protection against reperfusion-induced arrhythmias in the rat heart. Eur J Pharmacol. 1986;131:21–30.

    Article  PubMed  CAS  Google Scholar 

  45. Sharov VG, Afonskaya NI, Ruda MY, et al. Protection of ischemic myocardium by exogenous phosphocreatine: Pharmacokinetics of phosphocreatine, reduction of infarct size, stabilization of sarcolemma of ischemic cardiomyocytes and antithrombotic action. Biochem Med Metab Biol. 1986;35:101–114.

    Article  PubMed  CAS  Google Scholar 

  46. Woo YJ, Grand TJ, Zentko S, et al. Creatine phosphate administration preserves myocardial function in a model of off-pump coronary revascularization. J Cardiovasc Surg. 2005;46:297–305.

    CAS  Google Scholar 

  47. Robinson LA, Braimbridge MV, Hearse DJ. Creatine phosphate: an additive myocardial protective and antiarrhythmic agent in cardioplegia. J Thorac Cardiovasc Surg. 1984;87:190–200.

    PubMed  CAS  Google Scholar 

  48. Sharov VG, Saks VA, Kupriyanov VV, et al. Protection of ischemic myocardium by exogenous creatine phosphate: morphologic and phosphorus 31-nuclear magnetic resonance studies. J Thorac Cardiovasc Surg. 1987;94:749–761.

    PubMed  CAS  Google Scholar 

  49. Thelin S, Hultman J, Ronquist G, et al. Improved myocardial protection by creatine phosphate in cardioplegic solution. An in vivo study in the pig during normothermic ischemia. Thorac Cardiovasc Surg. 1987;35:137–142.

    Article  PubMed  CAS  Google Scholar 

  50. Down WH, Chasseaud LF, Ballard SA. The effect of intravenously administered phosphocreatine on ATP and phosphocreatine concentrations in the cardiac muscle of the rat. Arzneimittelforschung. 1983;33:552–554.

    PubMed  CAS  Google Scholar 

  51. Breccia A, Fini A, Girotti S, Gattavecchia E. Intracellular distribution of double-labelled creatine phosphate in the rabbit myocardium. Curr Ther Res. 1985;37:1205–1215.

    Google Scholar 

  52. Preobrazhensky AN, Javadov SA, Saks VA. Study of the hypothetical mechanism of protective effect of phosphocreatine on ischemic myocardium. Biochimia. 1986;51:675–683.

    Google Scholar 

  53. Jacobus WE. Respiratory control and the integration of heart high-energy phosphate metabolism by mithocondrial creatine kinase. Annu Rev Physiol. 1985;47:707–725.

    Article  PubMed  CAS  Google Scholar 

  54. Saks VA, Strumia E. Phosphocreatine: Molecular and cellular aspects of the mechanism of cardioprotective action. Curr Ther Res. 1993;53:565–598.

    Article  CAS  Google Scholar 

  55. Ronca-Testoni A, Raggi A, Ronca G. Muscle AMP aminohydrolase. Comparative study on the regulatory properties of skeletal muscle enzyme from various species. Biochim Biophys Acta. 1970;198:101–112.

    PubMed  CAS  Google Scholar 

  56. Saks VA, Javadov SA, Pozin E, Preobrazhensky AN. Biochemical basis of the protective action of phosphocreatine on the ischemic myocardium. In: Saks VA, Bobkov, Strumia E, eds. Proceedings of the Symposium “Creatine phosphate-biochemistry, pharmacology and clinical efficiency” Baku, October 1986. Torino: Edizioni Minerva Medica; 1987:95–111.

    Google Scholar 

  57. Rubio R, Belardinelli L, Thompson CI, Berne RM. Cardiac adenosine: Electrophysiological effects, possible significance in cell function and mechanism controlling its release. In: Baer HP, Drummond GI, eds. Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides. New York: Raven Press; 1979:167–183.

    Google Scholar 

  58. Ronca G, Ronca-Testoni S, Conte A, et al. Creatine phosphate and protection from peroxidative damage. Proceedings of the International Meeting “Cardioprotection with phosphocreatine in cardiology and cardiac surgery” IRCCS, Policlinical S. Matteo, Università degli Studi, Pavia, Italy, April 1989:61–71.

  59. Zucchi R, Poddighe R, Limbruno U, et al. Protection of isolated rat heart from oxidative stress by exogenous phosphocreatine. J Mol Cell Cardiol. 1989;21:67–73.

    Article  PubMed  CAS  Google Scholar 

  60. Konorev EA, Sharov VG, Saks VA. Improvement in contractile recovery of isolated rat heart after cardioplegic ischemic arrest with endogenous phosphocreatine: Involvement of antiperoxidative effect. Cardiovasc Res. 1991;25:164–171.

    Article  CAS  Google Scholar 

  61. Corr PB, Witkowski FX, Sobel BE. Mechanism contributing to malignant dysrhythmias induced by ischemia in the cat. J Clin Invest. 1978;61:109–119.

    Article  PubMed  CAS  Google Scholar 

  62. Sobel BE, Corr PB. Accumulation of lysophosphoglycerides with arrhythmogenic properties in ischemic myocardium. J Clin Invest. 1978;62:546–553.

    Article  PubMed  CAS  Google Scholar 

  63. Saks VA, Kapelko VI, Ruda MY, Semenovski ML, Strumia E. Phosphocreatine as effective drug in clinical cardiology. In: De Deyn PP, Marescau B, Stalon V, Qureshi IA, eds. Guanidino Compounds in Biology and Medicine. London: John Libbey & Company; 1992:239–248.

    Google Scholar 

  64. Guzun R, Timohhina N, Tepp K, et al. Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function. Amino Acids. 2011;40:1333–1348.

    Article  PubMed  CAS  Google Scholar 

  65. Hearse DJ, Brainbridge MV, Jynge P. Protection of the Ischemic Myocardium: Cardioplegia. New York: Raven Press; 1981:151–156.

    Google Scholar 

  66. Semenovsky ML, Shumakov VI, Sharov VG, et al. Protection of ischemic myocardium by exogenous creatine phosphate. II. Clinical, ultrastructural and biochemical evaluations. J Thorac Cardiovasc Surg. 1987;94:762–769.

    PubMed  CAS  Google Scholar 

  67. D’Alessandro LC, Cini R, Pucci A, et al. Protezione miocardica: uso del creatin fosfato addizionato alla soluzione cardioplegica. Heart Surgery 1987, 2nd International Symposium on Cardiac Surgery, Roma 1987, Casa Editrice Internazionale;179–192.

  68. Chambers DJ, Braimbridge MV, Kosker S, et al. Creatine phosphate (Neoton) as an additive to St. Thomas’ Hospital cardioplegic solution (Plegisol). Results of a clinical study. Eur J Cardiothor Surg. 1991;5:74–81.

    Article  CAS  Google Scholar 

  69. Chambers DJ, Haire K, Morley N, et al. St. Thomas’ Hospital cardioplegia: enhanced protection with exogenous creatine phosphate. Ann Thor Surg. 1996;61:67–75.

    Article  CAS  Google Scholar 

  70. Mastroroberto P, Di Tommaso L, Chello M, et al. Creatine phosphate protection of the ischemic myocardium during cardiac surgery. Curr Ther Res. 1992;51:37–45.

    Google Scholar 

  71. Pauletto P, Nascimben L, De Ros S, et al. Prevention of arrhythmias and changes in myocardial enzyme release with creatine phosphate in patients undergoing coronary artery by-pass. J Mol Cell Cardiol. 1993;25(Suppl. 3):109 (Abstract).

    Google Scholar 

  72. Pastoris O, Dossena M, Vercesi L, et al. Biochemical changes induced in the myocardial cell during cardioplegic arrest supplemented with creatine phosphate. J Cardiothorac Vasc Anesth. 1991;5:475–480.

    Article  PubMed  CAS  Google Scholar 

  73. Pagani L, Musiani A. The use of systemic phosphocreatine in heart surgery. Minerva Anestesiol. 1992;58:199–205.

    PubMed  CAS  Google Scholar 

  74. Cisowski M, Bochenek A, Kucewicz E, et al. The use of exogenous creatine phosphate for myocardial protection in patients undergoing coronary artery bypass surgery. A clinical assessment. J Cardiovasc Surg. 1996;37:75–80.

    CAS  Google Scholar 

  75. Thorelius J, Thelin S, Ronquist G, Halden E, Hansson HE. Biochemical and functional effects of creatine phosphate in cardioplegic solution during aortic valve surgery. A clinical study. Thorac Cardiovasc Surg. 1992;40:10–13.

    Article  PubMed  CAS  Google Scholar 

  76. Cossolini M, Sonzogni V, Di Dedda G, et al. Paediatric cold heart surgery: experience with creatine phosphate added to cardioplegic solution. In: D’Alessandro LC, ed. Heart Surgery. Roma: Casa Editrice Scientifica Internazionale; 1993:442–443.

    Google Scholar 

  77. Ruda MY, Samarenko MB, Afonskaya NI, Saks VA. Reduction of ventricular arrhythmias by creatine phosphate in patients with acute myocardial infarction. Am Heart J. 1988;116:393–397.

    Article  PubMed  Google Scholar 

  78. Reimers B, Maddalena F, Cacciavilani L, et al. La fosfocreatina nell’infarto miocardico acuto: studio randomizzato multicentrico. Il Cuore. 1994;11:345–354.

    Google Scholar 

  79. Scattolin G, Gambino A, Bellotto F, et al. Phosphocreatine in acute myocardial infarction. In: Saks VA, Bobkov YG, Strumia E, eds. Proceeding of the Symposium “Creatine Phosphate: Biochemistry, Pharmacology and Clinical Efficiency”, Baku, 6 October 1986. Torino: Minerva Medica; 1987;199–205.

    Google Scholar 

  80. Coraggio F, Spina M, Scarpato P. Analysis of creatine phosphate on the evolution of ischemic lesion in acute myocardial infarction. Farmaci Terapia. 1987;4:91–93.

    Google Scholar 

  81. Cini R, Stazi G, Giacopino F, et al. Creatinfosfato nella fase acuta dell’infarto miocardico. Risultati preliminari di uno studio clinico. Il Cuore. 1987;4:91–102.

    Google Scholar 

  82. Raisaro A, Bargiggia CS, Bertucci C, et al. Clinical evaluation of phosphocreatine effect during acute myocardial infarction: A multicenter study. Proceedings of the International Meeting “Cardioprotection with phosphocreatine in cardiology and cardiac surgery” IRCCS, Policlinico S. Matteo, Università degli studi, Pavia; 1989:139–147.

    Google Scholar 

  83. Camilova UK, Katsenovich RA, Kostco SZ. Combined use of creatine phosphate and nifedipine for treatment of patients with acute myocardial infarction. Curr Ther Res. 1991;50:591–598.

    Google Scholar 

  84. Iosseliani DG, Koledinsky AG, Kuchkina NV. Does intracoronary injection of phosphocreatine prevent myocardial reperfusion injury following angioplasty of infarct-related artery in acute-stage of myocardial infarction? J Intervent Cardiol. 2004;6:10–14.

    Google Scholar 

  85. Iosseliani DG, Koledinsky AG, Kuchkina NV. The possibility to limit reperfusion injury of cardiomyocytes using intracoronary cytoprotectors during endovascular reperfusion of the infarctrelated artery. J Intervent Cardiol. 2006;11:10–16.

    Google Scholar 

  86. Smilari L, La Mela C, Santagati A, et al. Study of left ventricular function in ischemic cardiomyopathies before and after phosphocreatine infusion. Echocardiographic study. Curr Ther Res. 1987;41:557–567.

    Google Scholar 

  87. Ferraro S, Codella C, Palumbo F, et al. Hemodynamic effects of creatine phosphate in patients with congestive heart failure: a doubleblind comparison trial versus placebo. Clin Cardiol. 1996;19:699–703.

    Article  PubMed  CAS  Google Scholar 

  88. Cafiero M, Strumia E, Pirone S, Pacileo S, Santoro R. Efficacia della creatina fosfato nel trattamento dei pazienti con insufficienza cardiaca, valutazione ecocardiografica dopo trattamento acuto e protratto. Clin Ter. 1994;144:321–328.

    PubMed  CAS  Google Scholar 

  89. Strozzi C, Bagni B, Ferri A. Creatine phosphate in the treatment of chronic ischemic heart failure. Curr Ther Res. 1992;51:925–932.

    Google Scholar 

  90. Scattolin G, Gabellini A, Desideri A, et al. Diastolic function and creatine phosphate: an echocardiografic study. Curr Ther Res. 1993;54:562–571.

    Article  Google Scholar 

  91. Gelfgat EB, Dalili IG, Shakhtakhtinskaya FN, Yagisarova NM, Shirinova EA. The effect of phosphocreatine on the tolerance of physical exercise in patients with ischemic heart disease. In: Saks VA, Bobkov YG, Strumia E, eds. Proceeding of the Symposium “Creatine Phosphate: Biochemistry, Pharmacology and Clinical Efficiency”, Baku, 6 October 1986. Torino: Minerva Medica; 1987:270.

    Google Scholar 

  92. Grazioli I, Strumia E. Terapia con creatina fosfato nel paziente con insufficienza cardiaca in fase di scompenso: studio policentrico. G Ital Ric Clin Ter. 1989;10:39–45.

    Google Scholar 

  93. Grazioli I, Melzi G, Strumia E. Multicentre controlled study of creatine phosphate in the treatment of heart failure. Curr Ther Res. 1992;52:271–280.

    Article  Google Scholar 

  94. Andreev NA, Andreeva TN, Bichkov IV. Effect of creatine phosphate in congestive heart failure. Curr Ther Res. 1992;51:649–660.

    Google Scholar 

  95. Galyautdinov GS, Saks VA, Kots Y, Vdovenko LG. Clinical application of creatine phosphate in congestive heart failure, evaluation of general clinical efficiency. Il Cuore. 1993;10:185–193.

    Google Scholar 

  96. Wang FR, Zheng X. Effects of phosphocreatine on plasma brain natriuretic peptide level and left ventricular function in patients with heart failure. Liaoning: Affiliated Hospital, Chinese Medicine University. Published at PJCCPVD, August 2008;16:29–31.

    Google Scholar 

  97. Yang W, Tang L. Clinical analysis on the treatment of pediatric myocarditis by neoton. Beijing Med J. 2001;23:19–20.

    Google Scholar 

  98. Dal Monte A, Leonardi LM, Figura F, et al. Effetti dell’apporto esogeno di fosfocreatina sulla potenza muscolare umana. Gazz Med Ital. 1976;135:1–11.

    Google Scholar 

  99. Tegazzin V, Rossi M, Schiavon M, et al. Indagine sulla performance di ciclisti trattati e non trattati con fosfocreatina. Biol Med. 1991;13:121–135.

    Google Scholar 

  100. Vorobiev DV, Vetrova EG, Larina IM, Popova IA, Grigoriev AI. Energy substrates, hormone responses and glucocorticoid binding in lymphocytes during intense physical exercise in humans following phosphocreatine administration. Eur J Appl Physiol Occup Physiol. 1996;74:534–540.

    Article  PubMed  CAS  Google Scholar 

  101. Satolli F, Marchesi G. Creatine phosphate in the rehabilitation of patients with muscle hypotonotrophy of the lower extremity. Curr Ther Res. 1989;46:67–73.

    Google Scholar 

  102. Agnese L, Tarello M, Grazioli I. Efficacia della creatina fosfato nel trattamento della ipotonotrofia da non uso della muscolatura scheletrica. Ort e Traum Oggi. 1992;12:107–113.

    Google Scholar 

  103. Pirola V, Pisani L, Teruzzi P. Valutazione del recupero del trofismo muscolare in pazienti anziani con frattura di femore trattati con creatina fosfato e fisiokinesiterapia. Clin Ter. 1991;139:115–119.

    PubMed  CAS  Google Scholar 

  104. Weber P, Vlašicovábrová R, Semrád B. Asset of creatine phosphate for cardiocerebral syndrome treatment in acute myocardial infarction in old age. Cas Lék Ces. 1992;134:53–56.

    Google Scholar 

  105. Skrivanek O, Kalvach P, Benetin J, et al. Creatine phosphate in the treatment of acute ischaemic stroke. Prakticky Lekar. 1995;75:7–8.

    Google Scholar 

  106. Bakala J, Kalita Z. SPECT findings in patients with acute stroke treated with NEOTON. Paper presented at: Proceedings of the “ 13th International Czech and Slovak Neurovascular Symposium”; June 8–9, 1995, Zlin, Czech Republic.

  107. Zhang G, Luo W, Zheng J, He W. Clinical observation and blood gas changes after the treatment of neoton in neonates with moderate or severe hypoxic ischemic encephalopathy. Pediatr Emerg Med. 2004;11:397–398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ettore Strumia.

Additional information

To view enhanced content go to www.advancesintherapy.com

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strumia, E., Pelliccia, F. & D’Ambrosio, G. Creatine Phosphate: Pharmacological and Clinical Perspectives. Adv Therapy 29, 99–123 (2012). https://doi.org/10.1007/s12325-011-0091-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-011-0091-4

Keywords

Navigation