Skip to main content
Log in

Oxidative stress parameters in patients with slow coronary flow

  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Introduction

We investigated the probable role of free-radical damage in the pathogenesis of slow coronary flow (SCF) by using oxidative stress parameters.

Methods

Sixty-four patients with angiographically proven SCF and 63 patients with normal coronary flow (NCF) pattern with similar risk profiles were enrolled in this study. We measured erythrocyte superoxide dismutase (SOD), reduced glutathione (GSH), serum malondialdehyde (MDA), catalase and myeloperoxidase (MPO) levels in all subjects.

Results

There were statistically significant differences in the levels of erythrocyte SOD, GSH and serum MDA between the 2 groups. Serum MDA (P=0.003) and erythrocyte SOD levels (P=0.0001) were increased in the SCF group. The level of erythrocyte GSH (P=0.010) was lower in patients with SCF. There were no differences between the groups’ serum catalase (P=0.682) and MPO levels (P=0.070).

Conclusion

Our data showed that in patients with SCF, serum MDA and erythrocyte SOD levels were increased while erythrocyte GSH levels were decreased significantly, compared with NCF patients. These results indicate that free-radical damage may play a role in the pathogenesis of SCF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tambe AA, Demany MA, Zimmerman HA, Mascarenhas E. Angina pectoris and slow flow velocity of dye in coronary arteries, a new angiographic finding. Am Heart J. 1972;84:66–71.

    Article  PubMed  CAS  Google Scholar 

  2. Pekdemir H, Cin VG, Cicek D, et al. Slow coronary flow may be a sign of diffuse atherosclerosis. Contribution of FFR and IVUS. Acta Cardiol. 2004;59:127–133.

    Article  PubMed  Google Scholar 

  3. Graham IM, Daly LE, Refsum HM, et al. Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA. 1997;277:1775–1781.

    Article  PubMed  CAS  Google Scholar 

  4. Tawakol A, Omland T, Gerhard M, Wu JT, Creager MA. Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation. 1997;95:1119–1121.

    PubMed  CAS  Google Scholar 

  5. Goel PK, Gupta SK, Agarwal A, Kapoor A. Slow coronary flow: a distinct angiographie subgroup in syndrome X. Angiology. 2001;52:507–514.

    PubMed  CAS  Google Scholar 

  6. Beltrame JF, Turner SP, Horowitz JD. Persistence of the coronary slow flow phenomenon. Am J Cardiol. 2001;88:938.

    Article  PubMed  CAS  Google Scholar 

  7. Mosseri M, Yarom R, Gotsman MS, Hasin Y. Histologic evidence for small vessel coronary artery disease in patients with angina pectoris and patent large coronary arteries. Circulation. 1986;74:964–972.

    PubMed  CAS  Google Scholar 

  8. Kurtoglu N, Akcay A, Dindar I. Usefulness of oral dipyridamole therapy for angiographic slow coronary artery flow. Am J Cardiol. 2001;87:777–779.

    Article  PubMed  CAS  Google Scholar 

  9. Vrints C, Herman AG. Role of the endothelium in the regulation of coronary artery tone. Acta Cardiol. 1991;46:399–418.

    PubMed  CAS  Google Scholar 

  10. Stocker R, Keaney JF. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84:1381–1478.

    Article  PubMed  CAS  Google Scholar 

  11. Li JJ, Xu B, Li ZC, Qian J, Wei BQ. Is slow coronary flow associated with inflammation? Med Hypothesis. 2006;66:504–508.

    Article  Google Scholar 

  12. Turhan H, Saydam GS, Erbay AR, et al. Increased plasma soluble adhesion molecules; ICAM-1, VCAM-1, and E-selectin levels in patients with slow coronary flow. Int J Cardiol. 2006;108:224–230.

    Article  PubMed  Google Scholar 

  13. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Phys India. 2004;52:794–804.

    CAS  Google Scholar 

  14. Eugene AP, Husam M, Stanley LH. Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic Biol Med. 2000;28:1717–1725.

    Article  Google Scholar 

  15. Hurst JK. Myeloperoxidase-active site structure and catalytic machanisms. In: Everse J, Everse K, Grisham MB, eds. Peroxidases in Chemistry and Biology. Boca Raton: CRC Press; 1991:37–62.

    Google Scholar 

  16. Kettle AJ, Winterbourn CC. Myeloperoxidase: a key regulator of neutrophil oxidant production. Redox Rep. 1997;3:3–15.

    CAS  Google Scholar 

  17. Hazen SL, Hsu FF, Mueller DM, Crowley JR, Heinecke JW. Human neutrophils employ chlorine gas as an oxidant during phagocytosis. J Clin Invest. 1996;98:1283–1289.

    Article  PubMed  CAS  Google Scholar 

  18. Weiss SJ, Klein R, Slivka A, Wei M. Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Invest. 1982;70:598–607.

    Article  PubMed  CAS  Google Scholar 

  19. Schwenke DC. Antioxidants and atherogenesis. J Nutr Biochem. 1998;9:424–445.

    Article  CAS  Google Scholar 

  20. Chen J, Mehta JL. Role of oxidative stress in coronary heart disease. Indian Heart J. 2004;56:163–173.

    PubMed  Google Scholar 

  21. Kaneda H, Taguchi J, Ogasawara K, Aizawa T, Ohno M. Increased level of advanced oxidation protein products in patients with coronary artery disease. Atherosclerosis. 2002;162:221–225.

    Article  PubMed  CAS  Google Scholar 

  22. Gibson CM, Cannon CP, Daley WL, et al. TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation. 1996;93:879–888.

    PubMed  CAS  Google Scholar 

  23. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358.

    Article  PubMed  CAS  Google Scholar 

  24. Winterbourn CC, Hawkings RE, Brian M, Carrel RW. The estimation of red cells superoxide dismutase activity. J Lab Clin Med. 1975;85:337–342.

    PubMed  CAS  Google Scholar 

  25. Moron MS, Depierre JW, Mannervik B. Level of glutathione, glutathione reductase and glutathione-S-transferase activity in rat lung and liver. Biochem Biophys Acta. 1979;82:67–78.

    Google Scholar 

  26. Knight KR, Zhang B, Morrison WA, Stewart AG. Ischaemia-referfusion injury in mouse skeletal muscle is reduced by N-nitro-L-arginine methyl ester and dexamethasone. Eur J Pharmacol. 1997;332:273–278.

    Article  PubMed  CAS  Google Scholar 

  27. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126.

    Article  PubMed  CAS  Google Scholar 

  28. Baskol G, Demir H, Baskol M, et al. Assessment of paraoxonase 1 activity and malondialdehyde levels in patients with rheumatoid arthritis. Clin Biochem. 2005;38:951–955.

    Article  PubMed  CAS  Google Scholar 

  29. Akca T, Canbaz H, Tataroglu C, et al. The effect of N-acetylcysteine on pulmonary lipid peroxidation and tissue damage. J Surg Res. 2005;129:38–45.

    Article  PubMed  CAS  Google Scholar 

  30. Yu BP. Cellular defenses against damage from reactive oxygen species. Phys Rev. 1994;74:139–162.

    CAS  Google Scholar 

  31. Erol U, Gurdal M, Erol A, Aslan R, Konukoğlu D, Onmus H. Is midazolam effective as an antioxidant in preventing reperfusion injury in rat kidney? Int Urol Nephrol. 2002;34:121–127.

    Article  PubMed  CAS  Google Scholar 

  32. Bhagwat SV, Vijayasarathy C, Raza H, Mullick J, Avadhani NG. Preferential effects of nicotine and 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone on mitochondrial glutathione S-transferase a4-4 induction and increased oxidative stress in the rat brain. Biochem Pharm. 1998;56:831–839.

    Article  PubMed  CAS  Google Scholar 

  33. Lau D, Baldus S. Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacol Ther. 2006;111:16–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasar Enli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enli, Y., Turk, M., Akbay, R. et al. Oxidative stress parameters in patients with slow coronary flow. Adv Therapy 25, 37–44 (2008). https://doi.org/10.1007/s12325-008-0011-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-008-0011-4

Keywords

Navigation