Skip to main content
Log in

Research Note: Functional Connectivity Between a Corticostriatal Network and the Cerebellum

  • Short reports
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Background

Basal ganglia and cerebellum are structurally and functionally connected in animals. In humans, tractography and seed-based functional connectivity have confirmed this cerebellar-striatal relation. Independent component analysis (ICA) showed that both cerebellum and basal ganglia take part in distinct intrinsic networks.

Methods

Probabilistic ICA analysis was applied to the brain images of 15 healthy volunteers during the resting state and using a 3 T MRI.

Results

A spatial map corresponding to dorsal and ventral basal ganglia circuits was also found to be in functional coherence with crus 2, especially with its vermal region.

Conclusion

It is speculated that such cerebellar-basal ganglionic rsFC could reflect structural interconnections traced in animals and explain reward-based activity detected in the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data Availability

The author will send data on request.

Abbreviations

ICA:

Independent component analysis

rsFC:

Resting-state functional connectivity

ICNs:

Intrinsically connected networks

BG:

Basal ganglia

PICA:

Probabilistic independent component analysis

PPT:

Posterior probability threshold

BGIN:

Basal ganglia-centered intrinsic network

References

  1. Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3. https://doi.org/10.1038/nn1544.

    Article  CAS  PubMed  Google Scholar 

  2. Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K. Cerebellar modulation of the reward circuitry and social behavior. Science. 2019;363(6424):eaav0581. https://doi.org/10.1126/science.aav0581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci USA. 2010;107(18):8452–6. https://doi.org/10.1073/pnas.1000496107.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018;19(6):338–50. https://doi.org/10.1038/s41583-018-0002-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen CH, Fremont R, Arteaga-Bracho EE, Khodakhah K. Short latency cerebellar modulation of the basal ganglia. Nat Neurosci. 2014;17(12):1767–75. https://doi.org/10.1038/nn.3868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wagner MJ, Luo L. Neocortex-cerebellum circuits for cognitive processing. Trends Neurosci. 2020;43(1):42–54. https://doi.org/10.1016/j.tins.2019.11.002.

    Article  CAS  PubMed  Google Scholar 

  7. Pelzer EA, Hintzen A, Goldau M, von Cramon DY, Timmermann L, Tittgemeyer M. Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci. 2013;38(8):3106–14. https://doi.org/10.1111/ejn.12314.

    Article  PubMed  Google Scholar 

  8. Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP. Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex. 2008;18(12):2735–47. https://doi.org/10.1093/cercor/bhn041.

    Article  PubMed  Google Scholar 

  9. Cauda F, Cavanna AE, D’agata F, Sacco K, Duca S, Geminiani GC. Functional connectivity and coactivation of the nucleus accumbens: a combined functional connectivity and structure-based meta-analysis. J Cogn Neurosci. 2011;23(10):2864–77. https://doi.org/10.1162/jocn.2011.21624.

    Article  PubMed  Google Scholar 

  10. Tomasi D, Volkow ND. Functional connectivity of substantia nigra and ventral tegmental area: maturation during adolescence and effects of ADHD. Cereb Cortex. 2014;24(4):935–44. https://doi.org/10.1093/cercor/bhs382.

    Article  PubMed  Google Scholar 

  11. Choi EY, Yeo BT, Buckner RL. The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol. 2012;108(8):2242–63. https://doi.org/10.1152/jn.00270.2012.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94. https://doi.org/10.1523/JNEUROSCI.1868-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sang L, Qin W, Liu Y, Han W, Zhang Y, Jiang T, Yu C. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. Neuroimage. 2012;61(4):1213–25. https://doi.org/10.1016/j.neuroimage.2012.04.011.

    Article  PubMed  Google Scholar 

  14. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;9(10):2485–97. https://doi.org/10.1093/cercor/bhp135.

    Article  Google Scholar 

  15. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–65. https://doi.org/10.1093/cercor/bhp157.

    Article  PubMed  Google Scholar 

  16. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44. https://doi.org/10.1016/j.cortex.2009.11.008.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Baumann O, Mattingley JB. Functional topography of primary emotion processing in the human cerebellum. Neuroimage. 2012;61(4):805–11. https://doi.org/10.1016/j.neuroimage.2012.03.044.

    Article  PubMed  Google Scholar 

  18. Pierce JE, Péron J. The basal ganglia and the cerebellum in human emotion. Soc Cogn Affect Neurosci. 2020;15(5):599–613. https://doi.org/10.1093/scan/nsaa076.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Milardi D, Quartarone A, Bramanti A, Anastasi G, Bertino S, Basile GA, Buonasera P, Pilone G, Celeste G, Rizzo G, Bruschetta D, Cacciola A. The cortico-basal ganglia-cerebellar network: past, present and future perspectives. Front Syst Neurosci. 2019;30(13):61. https://doi.org/10.3389/fnsys.2019.00061.

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Pr Mario Manto.

Author information

Authors and Affiliations

Authors

Contributions

C Habas: data collecting, data processing, and manuscript writing. The author read and approved the final manuscript.

Corresponding author

Correspondence to Christophe Habas.

Ethics declarations

Ethics Approval

The study in 2009 was approved by the Standford Institutional Review Board.

Consent to Participate

All volunteers gave their informed consent in 2009.

Consent for Publication

Yes.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habas, C. Research Note: Functional Connectivity Between a Corticostriatal Network and the Cerebellum. Cerebellum 21, 520–524 (2022). https://doi.org/10.1007/s12311-021-01316-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01316-w

Keywords

Navigation