Skip to main content
Log in

Neurocognitive Changes in Spinocerebellar Ataxia Type 3: A Systematic Review with a Narrative Design

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia type 3 (SCA3), the commonest dominantly inherited ataxia worldwide, is characterized by disruption in the cerebellar-cerebral and striatal-cortical networks. Findings on SCA3-associated cognitive impairments are mixed. The classification models, tests and scoring systems used, language, culture, ataxia severity, and depressive symptoms are all potential confounders in neuropsychological assessments and may have contributed to the heterogeneity of the neurocognitive profile of SCA3. We conducted a systematic review of studies evaluating neurocognitive function in SCA3 patients. Of 1304 articles identified, 15 articles met the eligibility criteria. All articles were of excellent quality according to the National Institutes of Health quality assessment tool for case–control studies. In line with the disrupted cerebellar-cerebral and striatal-cortical networks in SCA3, this systematic review found that the neurocognitive profile of SCA3 is characterized by a core impairment of executive function that affects processes such as nonverbal reasoning, executive aspects of language, and recall. Conversely, neurocognitive domains such as general intelligence, verbal reasoning, semantic aspect of language, attention/processing speed, recognition, and visuospatial perception and construction are relatively preserved. This review highlights the importance of evaluating neurocognitive function in SCA3 patients. Considering the negative impact of cognitive and affective impairment on quality of life, this review points to the profound impairments that existing or future treatments should prioritize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lindsay E, Storey E. Cognitive changes in the spinocerebellar ataxias due to expanded polyglutamine tracts: A survey of the literature. Brain Sci. 2017;7:83–102.

    Article  PubMed Central  Google Scholar 

  3. Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17:241–54.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hernandez-Castillo CR, King M, Diedrichsen J, Fernandez-Ruiz J. Unique degeneration signatures in the cerebellar cortex for spinocerebellar ataxias 2, 3, and 7. NeuroImage Clin. 2018;20:931–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ahmadian N, van Baarsen K, van Zandvoort M, Robe PA. The cerebellar cognitive affective syndrome—a meta-analysis. Cerebellum. 2019;18:941–50.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ray KL, Ragland JD, MacDonald AW, Gold JM, Silverstein SM, Barch DM, Carter CS. Dynamic reorganization of the frontal parietal network during cognitive control and episodic memory. Cogn Affect Behav Neurosci. 2020;20:76–90.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hoche F, Guell X, Sherman JC, Vangel MG, Schmahmann JD. Cerebellar contribution to social cognition. Cerebellum. 2016;15:732–43.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schmahmann JD. Pediatric post-operative cerebellar mutism syndrome, cerebellar cognitive affective syndrome, and posterior fossa syndrome: historical review and proposed resolution to guide future study. Childs Nerv Syst. 2019;36:1205–14.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Argyropoulos GP, Van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, et al. The cerebellar cognitive affective/Schmahmann syndrome: a task force paper. The Cerebellum. 2020:19;102–25.

  10. Paulson H. Machado-Joseph disease/spinocerebellar ataxia type 3. Handb Clin Neurol. 2012;103:437–49.

    Article  PubMed  PubMed Central  Google Scholar 

  11. D’Abreu A, França MC Jr, Yasuda CL, Campos BA, Lopes-Cendes I, Cendes F. Neocortical atrophy in Machado-Joseph disease: a longitudinal neuroimaging study. J Neuroimaging. 2012;22:285–91.

    Article  PubMed  Google Scholar 

  12. Wu X, Liao X, Zhan Y, Cheng C, Shen W, Huang M, Zhou Z, Wang Z, Qiu Z, Xing W. Microstructural alterations in asymptomatic and symptomatic patients with spinocerebellar ataxia type 3: a tract-based spatial statistics study. Front Neurol. 2017;8:714–22.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.

    Article  CAS  PubMed  Google Scholar 

  14. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ. 2015;349:g7647–71.

    Article  Google Scholar 

  15. Zawacki TM, Grace J, Friedman JH, Sudarsky L. Executive and emotional dysfunction in Machado-Joseph disease. Mov Disord. 2002;17:1004–10.

    Article  PubMed  Google Scholar 

  16. Bürk K, Globas C, Bösch S, Klockgether T, Zühlke C, Daum I, Dichgans J. Cognitive deficits in spinocerebellar ataxia Type 1, 2, and 3. J Neurol. 2003;250:207–11.

    Article  PubMed  Google Scholar 

  17. Kawai Y, Takeda A, Abe Y, Washimi Y, Tanaka F, Sobue G. Cognitive impairments in Machado-Joseph disease. Arch Neurol. 2004;61:1757–60.

    Article  PubMed  Google Scholar 

  18. Garrard P, Martin N, Giunti P, Cipolotti L. Cognitive and social cognitive functioning in spinocerebellar ataxia. J Neurol. 2008;255:398–405.

    Article  CAS  PubMed  Google Scholar 

  19. Klinke I, Minnerop M, Schmitz-Hübsch T, Hendriks M, Klockgether T, Wüllner U, Helmstaedter C. Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum. 2010;9:433–42.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Braga-Neto P, Pedroso JL, Alessi H, Dutra LA, Felício AC, Minett T, Weisman P, Santos-Galduroz RF, Bertolucci PHF, Gabbai AA. Cerebellar cognitive affective syndrome in Machado Joseph disease: Core clinical features. Cerebellum. 2012;11:549–56.

    Article  PubMed  Google Scholar 

  21. Lopes TM, Anelyssa D, Junior MCF, Yasuda CL, Betting LE, Samara AB, Castellano G, Somazz JC, Balthazar MLF, Lopes-Cendes I. Widespread neuronal damage and cognitive dysfunction in spinocerebellar ataxia type 3. J Neurol. 2013;260:2370–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ma J, Wu C, Lei J, Zhang X. Cognitive impairments in patients with spinocerebellar ataxia types 1, 2 and 3 are positively correlated to the clinical severity of ataxia symptoms. Int J Clin Exp Med. 2014;7:5765–71.

    PubMed  PubMed Central  Google Scholar 

  23. Feng L, Chen DB, Hou L, Huang LH, Lu SY, Liang XL, Li XH. Cognitive impairment in native Chinese with spinocerebellar ataxia type 3. Eur Neurol. 2014;71:262–70.

    Article  PubMed  Google Scholar 

  24. Tamura I, Takei A, Hamada S, Soma H, Nonaka M, Homma S, Moriwaka F. Executive dysfunction in patients with spinocerebellar ataxia type 3. J Neurol. 2018;265:1563–72.

    Article  PubMed  Google Scholar 

  25. Elyoseph Z, Mintz M, Vakil E, Zaltzman R, Gordon CR. Selective procedural memory impairment but preserved declarative memory in spinocerebellar ataxia type 3. Cerebellum. 2020;19:226–34.

    Article  PubMed  Google Scholar 

  26. Saute JAM, da Silva ACF, Donis KC, Vedolin L, Saraiva-Pereira ML, Jardim LB. Depressive mood is associated with ataxic and non-ataxic neurological dysfunction in SCA3 patients. Cerebellum. 2010;9:603–5.

    Article  PubMed  Google Scholar 

  27. Schmitz‐Hübsch T, Coudert M, Tezenas du Montcel S, Giunti P, Labrum R, Dürr A, Ribai P, Charles P, Linnemann C, Schöls L. Depression comorbidity in spinocerebellar ataxia. Mov Disord. 2011;26:870–6.

    Article  PubMed  Google Scholar 

  28. Lo RY, Figueroa KP, Pulst SM, Perlman S, Wilmot G, Gomez C, Schmahmann J, Paulson H, Shakkottai VG, Ying S. Depression and clinical progression in spinocerebellar ataxias. Parkinsonism Relat Disord. 2016;22:87–92.

    Article  PubMed  Google Scholar 

  29. Lin M-T, Yang J-S, Chen P-P, Qian M-Z, Lin H-X, Chen X-P, Shang X-J, Wang D-N, Chen Y-C, Jiang B. Bidirectional connections between depression and ataxia severity in spinocerebellar ataxia type 3 patients. Eur Neurol. 2018;79:266–71.

    Article  PubMed  Google Scholar 

  30. National Health Medical Research Council. NHMRC additional levels of evidence and grades for recommendations for developers of guidelines. 2009.

  31. National Institutes of Health. Study quality assessment tools. 2019. https://www.nhlbi.nih.gov/healthtopics/study-quality-assessment-tools. Accessed 21 June 2020.

  32. Lezak M, Howieson D, Bigler E, Tranel D. Neuropsychological assessment. Oxford: Oxford University Press; 2012.

  33. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141:248–70.

    Article  PubMed  Google Scholar 

  34. Franco-Marina F, García-González JJ, Wagner-Echeagaray F, Gallo J, Ugalde O, Sánchez-García S, Espinel-Bermúdez C, Juárez-Cedillo T, Rodríguez MÁV, García-Peña C. The mini-mental state examination revisited: ceiling and floor effects after score adjustment for educational level in an aging Mexican population. Int Psychogeriatr. 2010;22:72–81.

    Article  PubMed  Google Scholar 

  35. Cunha PJ, Nicastri S, de Andrade AG, Bolla KI. The Frontal Assessment Battery (FAB) reveals neurocognitive dysfunction in substance-dependent individuals in distinct executive domains: abstract reasoning, motor programming, and cognitive flexibility. Addict Behav. 2010;35:875–81.

    Article  PubMed  Google Scholar 

  36. Coen RF, McCarroll K, Casey M, McNulty H, Laird E, Molloy AM, Ward M, Strain J, Hoey L, Hughes C. The Frontal Assessment Battery: normative performance in a large sample of older community-dwelling hospital outpatient or general practitioner attenders. J Geriatr Psychiatry Neurol. 2016;29:338–43.

    Article  PubMed  Google Scholar 

  37. Can SS, Gencay-Can A, Gunendi Z. Validity and reliability of the Clock Drawing Test as a screening tool for cognitive impairment in patients with fibromyalgia. Compr Psychiatry. 2012;53:81–6.

    Article  PubMed  Google Scholar 

  38. Jouk A, Tuokko H. A reduced scoring system for the Clock Drawing Test using a population-based sample. Int Psychogeriatr. 2012;24:1738–48.

    Article  PubMed  Google Scholar 

  39. Powlishta K, Von Dras D, Stanford A, Carr D, Tsering C, Miller J, Morris J. The Clock Drawing Test is a poor screen for very mild dementia. Neurology. 2002;59:898–903.

    Article  CAS  PubMed  Google Scholar 

  40. Lam LCW, Chiu HFK, Ng KO, Chan C, Chan WF, Li SW, Wong M. Clock-face drawing, reading and setting tests in the screening of dementia in Chinese elderly adults. J Gerontol B Psychol Sci Soc Sci. 1998;53:353-P7.

    Article  Google Scholar 

  41. Piotrowski C. Bender-Gestalt test usage worldwide: a review of 30 practice-based studies. SIS Journal of Projective Psychology and Mental Health. 2016:23;73–81.

  42. Ylikoski R, Jokinen H, Andersen P, Salonen O, Madureira S, Ferro J, Barkhof F, Van Der Flier W, Schmidt R, Fazekas F. Comparison of the Alzheimer’s Disease Assessment Scale Cognitive Subscale and the vascular dementia assessment scale in differentiating elderly individuals with different degrees of white matter changes. Dement Geriatr Cogn Disord. 2007;24:73–81.

    Article  PubMed  Google Scholar 

  43. Fliessbach K, Hoppe C, Schlegel U, Elger C, Helmstaedter C. NeuroCogFX–a computer-based neuropsychological assessment battery for the follow-up examination of neurological patients. Fortschr Neurol Psychiatr. 2006;74:643.

    Article  CAS  PubMed  Google Scholar 

  44. Lehrl S, Fischer B. Kurztest für cerebrale Insuffizienz. Göttingen: Hogrefe; 1997.

    Google Scholar 

  45. Strauss E, Sherman EM, Spreen O. A compendium of neuropsychological tests: administration, norms, and commentary. Oxford: Oxford University Press; 2006.

  46. Cecchin CR, Pires A, Rieder C, Monte TL, Silveira I, Carvalho T, Saraiva-Pereira M, Sequeiros J, Jardim LB. Depressive symptoms in Machado-Joseph disease (SCA3) patients and their relatives. Public Health Genomics. 2007;10:19–26.

    Article  CAS  Google Scholar 

  47. Bonett DG. Confidence intervals for standardized linear contrasts of means. Psychol Methods. 2008;13:99–109.

    Article  PubMed  Google Scholar 

  48. Cohen J. Statistical power analysis for the behavioral sciences. Hoboken: Taylor and Francis; 2013.

  49. Kamphaus RW. Assessment of adolescent and adult intelligence. Clinical Assessment of Child and Adolescent Intelligence. New York: Springer; 2005. pp. 291–331.

  50. Wechsler D. Wechsler Adult Intelligence Scale-Fourth Edition (WAIS–IV). San Antonio: Psychological Corporation; 2014.

    Google Scholar 

  51. Lichtenberger EO, Kaufman AS. Essentials of WAIS-IV assessment. New York: Wiley; 2009.

    Google Scholar 

  52. van Aken L, Kessels RP, Wingbermühle E, van der Veld WM, Egger JI. Fluid intelligence and executive functioning more alike than different? Acta Neuropsychiatrica. 2016;28:31–7.

    Article  PubMed  Google Scholar 

  53. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn Psychol. 2000;41:49–100.

    Article  CAS  PubMed  Google Scholar 

  54. Goel V, Grafman J. Are the frontal lobes implicated in “planning” functions? Interpreting data from the Tower of Hanoi. Neuropsychologia. 1995;33:623–42.

    Article  CAS  PubMed  Google Scholar 

  55. Carpenter PA, Just MA, Shell P. What one intelligence test measures: a theoretical account of the processing in the Raven Progressive Matrices Test. Psychol Rev. 1990;97:404.

    Article  CAS  PubMed  Google Scholar 

  56. Baddeley A. Working memory: Theories, models, and controversies. Annu Rev Psychol. 2012;63:1–29.

    Article  PubMed  Google Scholar 

  57. Tan PL. Towards a culturally sensitive and deeper understanding of “rote learning” and memorisation of adult learners. J Stud Int Educ. 2011;15:124–45.

    Article  Google Scholar 

  58. Mattys SL, Baddeley A, Trenkic D. Is the superior verbal memory span of Mandarin speakers due to faster rehearsal? Mem Cognit. 2018;46:361–9.

    Article  PubMed  Google Scholar 

  59. Liu C-L, Tien K-W, Lai M-H, Chuang Y-H and Wu S-H. Phonological and logographic influences on errors in written Chinese words. Proceedings of the 7th Workshop on Asian Language Resources. Singapore, Association for Computational Linguistics; 2009. pp. 84–91.

  60. Mariën P, Ackermann H, Adamaszek M, Barwood CH, Beaton A, Desmond J, De Witte E, Fawcett AJ, Hertrich I, Kueper M. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13:386–410.

    PubMed  PubMed Central  Google Scholar 

  61. Cook M, Murdoch B, Cahill L, Whelan BM. Higher-level language deficits resulting from left primary cerebellar lesions. Aphasiology. 2004;18:771–84.

    Article  Google Scholar 

  62. Leggio MG, Silveri MC, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69:102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goldstein LH, McNeil JE. Clinical neuropsychology: a practical guide to assessment and management for clinicians. Hoboken: Wiley; 2012.

    Google Scholar 

  64. Paas F, Ayres P. Cognitive load theory: a broader view on the role of memory in learning and education. Educ Psychol Rev. 2014;26:191–5.

    Article  Google Scholar 

  65. Stefurak DL, Boynton RM. Independence of memory for categorically different colors and shapes. Percept Psychophys. 1986;39:164–74.

    Article  CAS  PubMed  Google Scholar 

  66. Chelune GJ, Bornstein RA, Prifitera A. The Wechsler Memory Scale—Revised. Boston: Springer; 1990.

    Book  Google Scholar 

  67. Loring DW, Martin RC, Meador KJ, Lee GP. Psychometric construction of the Rey-Osterrieth complex figure: methodological considerations and interrater reliability. Arch Clin Neuropsychol. 1990;5:1–14.

    Article  CAS  PubMed  Google Scholar 

  68. Temple RO, Davis JD, Silverman I, Tremont G. Differential impact of executive function on visual memory tasks. Clin Neuropsychol. 2006;20:480–90.

    Article  PubMed  Google Scholar 

  69. Meyers JE, Meyers KR. Rey complex figure test and recognition trial: professional manual. Odessa: Psychological Assessment Resources; 1995.

  70. Eliassen JC, Souza T, Sanes JN. Human brain activation accompanying explicitly directed movement sequence learning. Exp Brain Res. 2001;141:269–80.

    Article  CAS  PubMed  Google Scholar 

  71. Fera F, Weickert TW, Goldberg TE, Tessitore A, Hariri A, Das S, Lee S, Zoltick B, Meeter M, Myers CE. Neural mechanisms underlying probabilistic category learning in normal aging. J Neurosci. 2005;25:11340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Poirier M, Saint-Aubin J. Memory for related and unrelated words: further evidence on the influence of semantic factors in immediate serial recall. Q J Exp Psychol A. 1995;48:384–404.

    Article  CAS  PubMed  Google Scholar 

  73. Lalonde R, Botez-Marquard T. Neuropsychological deficits of patients with chronic or acute cerebellar lesions. J Neurolinguistics. 2000;13:117–28.

    Article  Google Scholar 

  74. Somerville J, Tremont G, Stern RA. The Boston qualitative scoring system as a measure of executive functioning in Rey-Osterrieth complex figure performance. J Clin Exp Neuropsychol. 2000;22:613–21.

    Article  CAS  PubMed  Google Scholar 

  75. Warrington EK, James M. The visual object and space perception battery (VOSP). London: Pearson; 1991.

  76. Roelofs RL, Wingbermühle E, Egger JI, Kessels RP. Social cognitive interventions in neuropsychiatric patients: a meta-analysis. Brain Impairment. 2017;18:138–73.

    Article  Google Scholar 

  77. Apperly IA, Butterfill SA. Do humans have two systems to track beliefs and belief-like states? Psychol Rev. 2009;116:953–70.

    Article  PubMed  Google Scholar 

  78. Fusar-Poli P, Placentino A, Carletti F, Landi P, Allen P, Surguladze S, Benedetti F, Abbamonte M, Gasparotti R, Barale F. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci. 2009;34:418–32.

    PubMed  PubMed Central  Google Scholar 

  79. Schutter DJ, Enter D, Hoppenbrouwers SS. High-frequency repetitive transcranial magnetic stimulation to the cerebellum and implicit processing of happy facial expressions. J Psychiatry Neurosci. 2009;34:60–5.

    PubMed  PubMed Central  Google Scholar 

  80. Titov N, Dear BF, McMillan D, Anderson T, Zou J, Sunderland M. Psychometric comparison of the PHQ-9 and BDI-II for measuring response during treatment of depression. Cogn Behav Ther. 2011;40:126–36.

    Article  PubMed  Google Scholar 

  81. Yousaf O, Popat A, Hunter MS. An investigation of masculinity attitudes, gender, and attitudes toward psychological help-seeking. Psychol Men Masculinity. 2015;16:234–7.

    Article  Google Scholar 

  82. Redlich R, Opel N, Bürger C, Dohm K, Grotegerd D, Förster K, Zaremba D, Meinert S, Repple J, Enneking V. The limbic system in youth depression: brain structural and functional alterations in adolescent in-patients with severe depression. Neuropsychopharmacology. 2018;43:546–54.

    Article  PubMed  Google Scholar 

  83. Koster EH, De Lissnyder E, Derakshan N, De Raedt R. Understanding depressive rumination from a cognitive science perspective: the impaired disengagement hypothesis. Clin Psychol Rev. 2011;31:138–45.

    Article  PubMed  Google Scholar 

  84. Karantzoulis S, Galvin JE. Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev Neurother. 2011;11:1579–91.

    Article  PubMed  PubMed Central  Google Scholar 

  85. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, Nahmias C, Young LT. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci. 2003;100:1387–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hickie I, Naismith S, Ward PB, Turner K, Scott E, Mitchell P, Wilhelm K, Parker G. Reduced hippocampal volumes and memory loss in patients with early-and late-onset depression. Br J Psychiatry. 2005;186:197–202.

    Article  PubMed  Google Scholar 

  87. Schönberg T, Daw ND, Joel D, O’Doherty JP. Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making. J Neurosci. 2007;27:12860–7.

  88. Schmahmann JD, Guell X, Stoodley CJ, Halko MA. The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci. 2019;42:337–64.

    Article  CAS  PubMed  Google Scholar 

  89. Tan LH, Liu H-L, Perfetti CA, Spinks JA, Fox PT, Gao J-H. The neural system underlying Chinese logograph reading. Neuroimage. 2001;13:836–46.

    Article  CAS  PubMed  Google Scholar 

  90. Paulson H and Shakkottai VG. Spinocerebellar ataxia type 3. In: A. MP and P. RA, editors. GeneReviews®[Internet]. Seattle: University of Washington, Seattle; 2015.

  91. Cicerone KD, Goldin Y, Ganci K, Rosenbaum A, Wethe JV, Langenbahn DM, Malec JF, Bergquist TF, Kingsley K, Nagele D. Evidence-based cognitive rehabilitation: systematic review of the literature from 2009 through 2014. Arch Phys Med Rehabil. 2019;100:1515–33.

    Article  PubMed  Google Scholar 

  92. von Cramon DY, Cramon GM-v, Mai N. Problem-solving deficits in brain-injured patients: a therapeutic approach. Neuropsychol Rehabil. 1991;1:45–64.

    Article  Google Scholar 

  93. O’Malley JM, Chamot AU, Stewner-Manzanares G, Kupper L, Russo RP. Learning strategies used by beginning and intermediate ESL students. Lang Learn. 1985;35:21–46.

  94. Levine B, Robertson IH, Clare L, Carter G, Hong J, Wilson BA, Duncan J, Stuss DT. Rehabilitation of executive functioning: an experimental–clinical validation of Goal Management Training. J Int Neuropsychol Soc. 2000;6:299–312.

    Article  CAS  PubMed  Google Scholar 

  95. Sohlberg MM, Kennedy M, Avery J, Coelho C, Turkstra L, Ylvisaker M, Yorkston K. Evidence-based practice for the use of external aids as a memory compensation technique. J Med Speech-Lang Pathol. 2007;15:xv–Ii.

    Google Scholar 

  96. Anson K, Ponsford J. Coping and emotional adjustment following traumatic brain injury. J Head Trauma Rehabil. 2006;21:248–59.

    Article  PubMed  Google Scholar 

  97. Wolters G, Stapert S, Brands I, Van Heugten C. Coping styles in relation to cognitive rehabilitation and quality of life after brain injury. Neuropsychol Rehabil. 2010;20:587–600.

    Article  PubMed  Google Scholar 

  98. Chang H, Huang K, Wu C. Determination of sample size in using central limit theorem for weibull distribution. Int J Inf Manage Sci. 2006;17:31.

    Google Scholar 

  99. Hestad KA, Menon JA, Serpell R, Kalungwana L, Mwaba SO, Kabuba N, Franklin DR Jr, Umlauf A, Letendre S, Heaton RK. Do neuropsychological test norms from African Americans in the United States generalize to a Zambian population? Psychol Assess. 2016;28:18–38.

    Article  PubMed  Google Scholar 

  100. Heilbronner RL, Sweet JJ, Morgan JE, Larrabee GJ, Millis SR, 1 CP. American Academy of Clinical Neuropsychology Consensus Conference Statement on the neuropsychological assessment of effort, response bias, and malingering. Clin Neuropsychol. 2009;23:1093–129.

    Article  PubMed  Google Scholar 

Download references

Funding

This review was funded by Dana Impak Perdana Grant (DIP-2019–007) received by NMI from Universiti Kebangsaan Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Funding acquisition was performed by Norlinah Mohamed Ibrahim and Shahrul Azmin; literature search was performed by Kah Hui Yap and Shahrul Azmin. The first draft of this review was written by Kah Hui Yap, and all authors critically revised the work. All authors read and approved the final version of the review.

Corresponding author

Correspondence to Norlinah Mohamed Ibrahim.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate and Publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 124 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yap, K.H., Kessels, R.P.C., Azmin, S. et al. Neurocognitive Changes in Spinocerebellar Ataxia Type 3: A Systematic Review with a Narrative Design. Cerebellum 21, 314–327 (2022). https://doi.org/10.1007/s12311-021-01282-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01282-3

Keywords

Navigation