Skip to main content

Advertisement

Log in

The Effects of Dual Task Cognitive Interference and Fast-Paced Walking on Gait, Turns, and Falls in Men and Women with FXTAS

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Fragile X–associated tremor/ataxia syndrome (FXTAS) is a genetic neurodegenerative disorder characterized by cerebellar ataxia, tremor, and cognitive dysfunction. We examined the impact of dual-task (DT) cognitive-motor interference and fast-paced (FP) gait on gait and turning in FXTAS. Thirty participants with FXTAS and 35 age-matched controls underwent gait analysis using an inertial sensor–based 2-min walk test under three conditions: (1) self-selected pace (ST), (2) FP, and (3) DT with a concurrent verbal fluency task. Linear regression analyses were performed to assess the association between FXTAS diagnosis and gait and turn outcomes. Correlations between gait variables and fall frequency were also calculated. FXTAS participants had reduced stride length and velocity, swing time, and peak turn velocity and greater double limb support time and number of steps to turn compared to controls under all three conditions. There was greater dual task cost of the verbal fluency task on peak turn velocity in men with FXTAS compared to controls. Additionally, stride length variability was increased and cadence was reduced in FXTAS participants in the FP condition. Stride velocity variability under FP gait was significantly associated with the number of self-reported falls in the last year. Greater motor control requirements for turning likely made men with FXTAS more susceptible to the negative effects of DT cognitive interference. FP gait exacerbated gait deficits in the domains of rhythm and variability, and increased gait variability with FP was associated with increased falls. These data may inform the design of rehabilitation strategies in FXTAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hagerman RJ, Leehey M, Heinrichs W, Tassone F, Wilson R, Hills J, et al. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology. 2001;57:127–30.

    CAS  PubMed  Google Scholar 

  2. Grigsby J, Cornish K, Hocking D, Kraan C, Olichney JM, Rivera SM, et al. The cognitive neuropsychological phenotype of carriers of the FMR1 premutation. J Neurodev Disord. 2014;6:28 1955-6-28.

    PubMed  PubMed Central  Google Scholar 

  3. Seritan AL, Nguyen DV, Farias ST, Hinton L, Grigsby J, Bourgeois JA, et al. Dementia in fragile X-associated tremor/ataxia syndrome (FXTAS): comparison with Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:1138–44.

    PubMed  PubMed Central  Google Scholar 

  4. Berry-Kravis E, Abrams L, Coffey S. Fragile X-associated tremor/ataxia syndrome: clinical features, genetics, and testing guidelines. Mov Disord. 2007;22:2018–30.

    PubMed  Google Scholar 

  5. Leehey M. Fragile X-associated tremor/ataxia syndrome: clinical phenotype, diagnosis, and treatment. J Investig Med. 2009;57:830–6.

    PubMed  PubMed Central  Google Scholar 

  6. O’Keefe JA, Robertson-Dick EE, Hall DA, Berry-Kravis E. Gait and functional mobility deficits in fragile X-associated tremor/ataxia syndrome. Cerebellum. 2016;15:475–82.

    PubMed  Google Scholar 

  7. O’Keefe JA, Robertson E, Ouyang B, Carnes D, McAsey A, Liu Y, et al. Cognitive function impacts gait, functional mobility and falls in fragile X-associated tremor/ataxia syndrome. Gait Posture. 2018;66:288–93.

    PubMed  PubMed Central  Google Scholar 

  8. Birch RC, Hocking DR, Cornish KM, Menant JC, Lord SR, Georgiou-Karistianis N, et al. Selective subcortical contributions to gait impairments in males with the FMR1 premutation. J Neurol Neurosurg Psychiatry. 2017;88:188–90.

    PubMed  Google Scholar 

  9. Raffegeau TE, Krehbiel LM, Kang N, Thijs FJ, Altmann LJP, Cauraugh JH, et al. A meta-analysis: Parkinson’s disease and dual-task walking. Parkinsonism Relat Disord. 2019;62:28–35.

    PubMed  Google Scholar 

  10. Amboni M, Barone P, Hausdorff JM. Cognitive contributions to gait and falls: evidence and implications. Mov Disord. 2013;28:1520–33.

    PubMed  PubMed Central  Google Scholar 

  11. Hamilton F, Rochester L, Paul L, Rafferty D, O’Leary CP, Evans JJ. Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis. Mult Scler. 2009;15:1215–27.

    CAS  PubMed  Google Scholar 

  12. Muir SW, Speechley M, Wells J, Borrie M, Gopaul K, Montero-Odasso M. Gait assessment in mild cognitive impairment and Alzheimer’s disease: the effect of dual-task challenges across the cognitive spectrum. Gait Posture. 2012;35:96–100.

    PubMed  Google Scholar 

  13. Montero-Odasso M, Speechley M. Falls in cognitively impaired older adults: implications for risk assessment and prevention. J Am Geriatr Soc. 2018;66:367–75.

    PubMed  Google Scholar 

  14. Muir-Hunter SW, Wittwer JE. Dual-task testing to predict falls in community-dwelling older adults: a systematic review. Physiotherapy. 2016;102:29–40.

    CAS  PubMed  Google Scholar 

  15. Li KZH, Bherer L, Mirelman A, Maidan I, Hausdorff JM. Cognitive involvement in balance, gait and dual tasking in aging: a focused review from a neuroscience of aging perspective. Front Neurol. 2018;9:913.

    PubMed  PubMed Central  Google Scholar 

  16. Kraan CM, Hocking DR, Georgiou-Karistianis N, Metcalfe SA, Archibald AD, Fielding J, et al. Age and CGG-repeat length are associated with neuromotor impairments in at-risk females with the FMR1 premutation. Neurobiol Aging. 2014;35:2179.e7–13.

    CAS  Google Scholar 

  17. Hocking D, Kraan C, Godler D, Bui Q, Li X, Bradshaw J, et al. Evidence linking FMR1 mRNA and attentional demands of stepping and postural control in women with the premutation. Neurobiol Aging. 2015;36:1400–8.

    CAS  PubMed  Google Scholar 

  18. Schniepp R, Schlick C, Pradhan C, Dieterich M, Brandt T, Jahn K, et al. The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia. J Neurol. 2016;263:1409–17.

    PubMed  Google Scholar 

  19. Schniepp R, Wuehr M, Neuhaeusser M, Kamenova M, Dimitriadis K, Klopstock T, et al. Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure. Mov Disord. 2012;27:125–31.

    PubMed  Google Scholar 

  20. Schniepp R, Wuehr M, Schlick C, Huth S, Pradhan C, Dieterich M, et al. Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J Neurol. 2014;261:213–23.

    PubMed  Google Scholar 

  21. Caliandro P, Conte C, Iacovelli C, Tatarelli A, Castiglia SF, Reale G, et al. Exploring risk of falls and dynamic unbalance in cerebellar ataxia by inertial sensor assessment. Sensors (Basel). 2019;19(24):E5571. https://doi.org/10.3390/s19245571.

    Article  Google Scholar 

  22. Kalron A. Association between gait variability, falls and mobility in people with multiple sclerosis: a specific observation on the EDSS 4.0–4.5 level. NeuroRehabilitation. 2017;40:579–85.

    PubMed  Google Scholar 

  23. Allali G, Launay CP, Blumen HM, Callisaya ML, De Cock AM, Kressig RW, et al. Falls, cognitive impairment, and gait performance: results from the GOOD initiative. J Am Med Dir Assoc. 2017;18:335–40.

    PubMed  Google Scholar 

  24. Allali G, Assal F, Kressig RW, Dubost V, Herrmann FR, Beauchet O. Impact of impaired executive function on gait stability. Dement Geriatr Cogn Disord. 2008;26:364–9.

    PubMed  Google Scholar 

  25. Pieruccini-Faria F, Sarquis-Adamson Y, Anton-Rodrigo I, Nogueron-Garcia A, Bray NW, Camicioli R, et al. Mapping associations between gait decline and fall risk in mild cognitive impairment. J Am Geriatr Soc. 2020;68(3):576–84.

    PubMed  Google Scholar 

  26. Jacquemont S, Hagerman R, Leehey M, Grigsby J, Zhang L, Brunberg J. Fragile X premutation tremor/ataxia syndrome: molecular, clinical, and neuroimaging correlates. Am J Hum Genet. 2003;72(4):869–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Apartis E, Blancher A, Meissner W. FXTAS: new insights and the need for revised diagnostic criteria. Neurology. 2012;79:1898–907.

    PubMed  Google Scholar 

  28. Hall DA, Robertson E, Shelton AL, Losh MC, Mila M, Moreno EG, et al. Update on the clinical, radiographic, and neurobehavioral manifestations in FXTAS and FMR1 premutation carriers. Cerebellum. 2016;15:578–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mancini M, King L, Salarian A, Holmstrom L, McNames J, Horak FB. Mobility lab to assess balance and gait with synchronized body-worn sensors. J Bioeng Biomed Sci. 2011;Suppl 1(007):9538.S1–007.

    Google Scholar 

  30. Tombaugh TN, Kozak J, Rees L. Normative data stratified by age and education for two measures of verbal fluency: FAS and animal naming. Arch Clin Neuropsychol. 1999 Feb;14(2):167–77.

    CAS  PubMed  Google Scholar 

  31. Lord S, Galna B, Verghese J, Coleman S, Burn D, Rochester L. Independent domains of gait in older adults and associated motor and nonmotor attributes: validation of a factor analysis approach. J Gerontol A Biol Sci Med Sci. 2013;68:820–7.

    PubMed  Google Scholar 

  32. Serrao M, Pierelli F, Ranavolo A, Draicchio F, Conte C, Don R, et al. Gait pattern in inherited cerebellar ataxias. Cerebellum. 2012;11:194–211.

    PubMed  Google Scholar 

  33. Leehey M, Berry-Kravis E, Goetz C, Zhang L, Hall D, Li L, et al. FMR1 CGG repeat length predicts motor dysfunction in premutation carriers. Neurology. 2008;70:1397–402.

    CAS  PubMed  Google Scholar 

  34. Freitas S, Simoes MR, Alves L, Santana I. Montreal cognitive assessment: validation study for mild cognitive impairment and Alzheimer disease. Alzheimer Dis Assoc Disord. 2013;27:37–43.

    PubMed  Google Scholar 

  35. Keith RA, Granger CV, Hamilton BB, Sherwin FS. The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil. 1987;1:6–18.

    CAS  PubMed  Google Scholar 

  36. Greco CM, Tassone F, Garcia-Arocena D, Tartaglia N, Coffey SM, Vartanian TK, et al. Clinical and neuropathologic findings in a woman with the FMR1 premutation and multiple sclerosis. Arch Neurol. 2008;65:1114–6.

    PubMed  PubMed Central  Google Scholar 

  37. Todd PK, Oh SY, Krans A, Pandey UB, Di Prospero NA, Min KT, et al. Histone deacetylases suppress CGG repeat-induced neurodegeneration via transcriptional silencing in models of fragile X tremor ataxia syndrome. PLoS Genet. 2010;6:e1001240.

    PubMed  PubMed Central  Google Scholar 

  38. Hadd AG, Filipovic-Sadic S, Zhou L, Williams A, Latham GJ, Berry-Kravis E, et al. A methylation PCR method determines FMR1 activation ratios and differentiates premutation allele mosaicism in carrier siblings. Clin Epigenetics. 2016;8:130 eCollection 2016.

    PubMed  PubMed Central  Google Scholar 

  39. Chen L, Hadd AG, Sah S, Houghton JF, Filipovic-Sadic S, Zhang W, et al. High-resolution methylation polymerase chain reaction for fragile X analysis: evidence for novel FMR1 methylation patterns undetected in southern blot analyses. Genet Med. 2011;13:528–38.

    PubMed  PubMed Central  Google Scholar 

  40. O’Keefe JA, Robertson-Dick E, Dunn EJ, Li Y, Deng Y, Fiutko AN, et al. Characterization and early detection of balance deficits in fragile x premutation carriers with and without fragile X-associated tremor/ataxia syndrome (FXTAS). Cerebellum. 2015;14:650–62.

    PubMed  Google Scholar 

  41. Coffey SM, Cook K, Tartaglia N, Tassone F, Nguyen DV, Pan R, et al. Expanded clinical phenotype of women with the FMR1 premutation. Am J Med Genet A. 2008;146A:1009–16.

    PubMed  PubMed Central  Google Scholar 

  42. Robertson EE, Hall DA, McAsey AR, O’Keefe JA. Fragile X-associated tremor/ataxia syndrome: phenotypic comparisons with other movement disorders. Clin Neuropsychol. 2016;30:849–900.

    PubMed  PubMed Central  Google Scholar 

  43. Patla AE, Adkin A, Ballard T. Online steering: coordination and control of body center of mass, head and body reorientation. Exp Brain Res. 1999;129:629–34.

    CAS  PubMed  Google Scholar 

  44. Wagner J, Stephan T, Kalla R, Bruckmann H, Strupp M, Brandt T, et al. Mind the bend: cerebral activations associated with mental imagery of walking along a curved path. Exp Brain Res. 2008;191:247–55.

    PubMed  Google Scholar 

  45. Weerdesteyn V, Hollands KL, Hollands MA. Gait adaptability. Handb Clin Neurol. 2018;159:135–46.

    PubMed  Google Scholar 

  46. Herman T, Giladi N, Hausdorff JM. Properties of the ‘timed up and go’ test: more than meets the eye. Gerontology. 2011;57:203–10.

    PubMed  Google Scholar 

  47. Bayot M, Dujardin K, Tard C, Defebvre L, Bonnet CT, Allart E, et al. The interaction between cognition and motor control: a theoretical framework for dual-task interference effects on posture, gait initiation, gait and turning. Neurophysiol Clin. 2018;48:361–75.

    PubMed  Google Scholar 

  48. Mirelman A, Weiss A, Buchman AS, Bennett DA, Giladi N, Hausdorff JM. Association between performance on timed up and go subtasks and mild cognitive impairment: further insights into the links between cognitive and motor function. J Am Geriatr Soc. 2014;62:673–8.

    PubMed  PubMed Central  Google Scholar 

  49. Stuart S, Galna B, Delicato LS, Lord S, Rochester L. Direct and indirect effects of attention and visual function on gait impairment in Parkinson’s disease: influence of task and turning. Eur J Neurosci. 2017;46:1703–16.

    PubMed  Google Scholar 

  50. Adams JS, Adams PE, Nguyen D, Brunberg JA, Tassone F, Zhang W, et al. Volumetric brain changes in females with fragile X-associated tremor/ataxia syndrome (FXTAS). Neurology. 2007;69:851–9.

    CAS  PubMed  Google Scholar 

  51. Brunberg JA, Jacquemont S, Hagerman RJ, Berry-Kravis EM, Grigsby J, Leehey MA, et al. Fragile X premutation carriers: characteristic MR imaging findings of adult male patients with progressive cerebellar and cognitive dysfunction. AJNR Am J Neuroradiol. 2002;23:1757–66.

    PubMed  Google Scholar 

  52. Filley CM, Brown MS, Onderko K, Ray M, Bennett RE, Berry-Kravis E, et al. White matter disease and cognitive impairment in FMR1 premutation carriers. Neurology. 2015;84:2146–52.

    PubMed  PubMed Central  Google Scholar 

  53. Hashimoto R, Srivastava S, Tassone F, Hagerman RJ, Rivera SM. Diffusion tensor imaging in male premutation carriers of the fragile X mental retardation gene. Mov Disord. 2011;26:1329–36.

    PubMed  PubMed Central  Google Scholar 

  54. Mirelman A, Maidan I, Bernad-Elazari H, Shustack S, Giladi N, Hausdorff JM. Effects of aging on prefrontal brain activation during challenging walking conditions. Brain Cogn. 2017;115:41–6.

    PubMed  Google Scholar 

  55. Strobach T, Antonenko D, Abbarin M, Escher M, Flöel A, Schubert T. Modulation of dual-task control with right prefrontal transcranial direct current stimulation (tDCS). Exp Brain Res. 2018;236(1):227–41.

    PubMed  Google Scholar 

  56. Kahya M, Moon S, Ranchet M, Vukas RR, Lyons KE, Pahwa R, et al. Brain activity during dual task gait and balance in aging and age-related neurodegenerative conditions: a systematic review. Exp Gerontol. 2019;128:110756.

    PubMed  PubMed Central  Google Scholar 

  57. Wagshul ME, Lucas M, Ye K, Izzetoglu M, Holtzer R. Multi-modal neuroimaging of dual-task walking: structural MRI and fNIRS analysis reveals prefrontal grey matter volume moderation of brain activation in older adults. Neuroimage. 2019;189:745–54.

    PubMed  PubMed Central  Google Scholar 

  58. Hashimoto R, Javan AK, Tassone F, Hagerman RJ, Rivera SM. A voxel-based morphometry study of grey matter loss in fragile X-associated tremor/ataxia syndrome. Brain. 2011;134:863–78.

    PubMed  PubMed Central  Google Scholar 

  59. Yang JC, Chan SH, Khan S, Schneider A, Nanakul R, Teichholtz S, et al. Neural substrates of executive dysfunction in fragile X-associated tremor/ataxia syndrome (FXTAS): a brain potential study. Cereb Cortex. 2013;23:2657–66.

    PubMed  Google Scholar 

  60. Ilg W, Christensen A, Mueller OM, Goericke SL, Giese MA, Timmann D. Effects of cerebellar lesions on working memory interacting with motor tasks of different complexities. J Neurophysiol. 2013;110:2337–49.

    PubMed  Google Scholar 

  61. Lang CE, Bastian AJ. Cerebellar damage impairs automaticity of a recently practiced movement. J Neurophysiol. 2002;87:1336–47.

    PubMed  Google Scholar 

  62. Wu T, Liu J, Hallett M, Zheng Z, Chan P. Cerebellum and integration of neural networks in dual-task processing. Neuroimage. 2013;65:466–75.

    PubMed  Google Scholar 

  63. Stuart S, Belluscio V, Quinn JF, Mancini M. Pre-frontal cortical activity during walking and turning is reliable and differentiates across young, older adults and people with Parkinson’s disease. Front Neurol. 2019;10:536.

    PubMed  PubMed Central  Google Scholar 

  64. Bruttini C, Esposti R, Bolzoni F, Vanotti A, Mariotti C, Cavallari P. Temporal disruption of upper-limb anticipatory postural adjustments in cerebellar ataxic patients. Exp Brain Res. 2015;233:197–203.

    PubMed  Google Scholar 

  65. Asaka T, Wang Y. Feedforward postural muscle modes and multi-mode coordination in mild cerebellar ataxia. Exp Brain Res. 2011;210:153–63.

    PubMed  Google Scholar 

  66. Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum. 2016;3:369–91.

    Google Scholar 

  67. Fraint A, Vittal P, Szewka A. New observations in the fragile X-associated tremor/ataxia syndrome (FXTAS) phenotype. Front Genet. 2014;5:365.

    PubMed  PubMed Central  Google Scholar 

  68. Stuart S, Vitorio R, Morris R, Martini DN, Fino PC, Mancini M. Cortical activity during walking and balance tasks in older adults and in people with Parkinson’s disease: a structured review. Maturitas. 2018;113:53–72.

    PubMed  PubMed Central  Google Scholar 

  69. Cullen S, Borrie M, Carroll S, Sarquis-Adamson Y, Pieruccini-Faria F, McKay S, et al. Are cognitive subtypes associated with dual-task gait performance in a clinical setting? J Alzheimers Dis. 2019;71:S57–64.

    PubMed  Google Scholar 

  70. Al-Yahya E, Dawes H, Smith L, Dennis A, Howells K, Cockburn J. Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2011;35:715–28.

    PubMed  Google Scholar 

  71. Wuehr M, Schniepp R, Ilmberger J, Brandt T, Jahn K. Speed-dependent temporospatial gait variability and long-range correlations in cerebellar ataxia. Gait Posture. 2013;37:214–8.

    CAS  PubMed  Google Scholar 

  72. Shao Z, Janse E, Visser K, Meyer AS. What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Front Psychol. 2014;5:772.

    PubMed  PubMed Central  Google Scholar 

  73. Maidan I, Bernad-Elazari H, Giladi N, Hausdorff JM, Mirelman A. When is higher level cognitive control needed for locomotor tasks among patients with Parkinson’s disease? Brain Topogr. 2017;30:531–8.

    PubMed  Google Scholar 

  74. Belluscio V, Stuart S, Bergamini E, Vannozzi G, Mancini M. The association between prefrontal cortex activity and turning behavior in people with and without freezing of gait. Neuroscience. 2019;416:168–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu YC, Yang YR, Tsai YA, Wang RY, Lu CF. Brain activation and gait alteration during cognitive and motor dual task walking in stroke-a functional near-infrared spectroscopy study. IEEE Trans Neural Syst Rehabil Eng. 2018;26:2416–23.

    PubMed  Google Scholar 

  76. Al-Yahya E, Johansen-Berg H, Kischka U, Zarei M, Cockburn J, Dawes H. Prefrontal cortex activation while walking under dual-task conditions in stroke: a multimodal imaging study. Neurorehabil Neural Repair. 2016;30:591–9.

    PubMed  Google Scholar 

  77. Hernandez ME, O’Donnell E, Chaparro G, Holtzer R, Izzetoglu M, Sandroff BM, et al. Brain activation changes during balance- and attention-demanding tasks in middle- and older-aged adults with multiple sclerosis. Motor Control. 2019;15:1–20. https://doi.org/10.1123/mc.2018-0044.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the patients and volunteers who participated in this study, as well as the Movement Disorders staff for assistance with study recruitment. We also thank Andrew McAsey, Colleen Huml, Alexandra Bery, Timothy Young, Lili Zhou, and Jonathon Jackson for assistance with the data collection.

Funding

This work was supported by the NIH (K01 HD088762) (JAO), Rush University Cohn Fellowship Award 2014 (JAO), Rush Translational Science Award 2015 (JAO), Rush Dean’s Fellowship Award 2018 (JG), National Fragile X Foundation 2015 Summer Fellowship Award (ER), and FRAXA Foundation grant (EBK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan A. O’Keefe.

Ethics declarations

Conflict of interest

Joan A. O’Keefe receives research support from the NIH (K01 HD088762); she reports no disclosures or conflicts of interests related to this manuscript. Joseph Guan reports no disclosures or conflicts of interests related to this manuscript. Erin Robertson reports no disclosures or conflicts of interests related to this manuscript. Alexandras Biskis reports no disclosures or conflicts of interests related to this manuscript. Jessica Joyce reports no disclosures or conflicts of interests related to this manuscript. Bichun Ouyang no disclosures or conflicts of interests related to this manuscript. Yuanqing Liu reports no disclosures or conflicts of interests related to this manuscript. Danielle Carnes reports no disclosures or conflicts of interests related to this manuscript. Nicollette Purcell reports no disclosures or conflicts of interests related to this manuscript. EBK has received funding from Seaside Therapeutics, Novartis, Roche, Alcobra, Neuren, Cydan, Fulcrum, GW, Neurotrope, Marinus, Zynerba, BioMarin, Ovid, Acadia, Yamo, Ionis, Ultragenyx, Lumos, GeneTx Pharmaceuticals to consult on trial design or development strategies and/or conduct clinical trials in FXS or other NDDs or neurodegenerative disorders, from Vtesse/Sucampo/Mallinkcrodt to conduct clinical trials in NP-C, and from Asuragen Inc. to develop testing standards for FMR1 testing as well as research support from NICHD, NINDS, NIMH, CDC, NCATS and the John Merck Fund. All funding to EBK is directed to Rush University Medical Center to support rare disease programs. EBK receives no personal funds. She reports no conflicts of interests related to this manuscript. Deborah A. Hall receives research support from the NIH, the Parkinson’s Foundation, Abbvie, Biogen, Biohaven, Neurocrine, Fujifilm, and Pfizer; she reports no conflicts of interests related to this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Keefe, J.A., Guan, J., Robertson, E. et al. The Effects of Dual Task Cognitive Interference and Fast-Paced Walking on Gait, Turns, and Falls in Men and Women with FXTAS. Cerebellum 20, 212–221 (2021). https://doi.org/10.1007/s12311-020-01199-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01199-3

Keywords

Navigation