Skip to main content

Advertisement

Log in

Biallelic Variants in the Nuclear Pore Complex Protein NUP93 Are Associated with Non-progressive Congenital Ataxia

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

A Correction to this article was published on 05 March 2019

This article has been updated

Abstract

Nuclear pore complexes (NPCs) are the gateways of the nuclear envelope mediating transport between cytoplasm and nucleus. They form huge complexes of 125 MDa in vertebrates and consist of about 30 different nucleoporins present in multiple copies in each complex. Here, we describe pathogenic variants in the nucleoporin 93 (NUP93) associated with an autosomal recessive form of congenital ataxia. Two rare compound heterozygous variants of NUP93 were identified by whole exome sequencing in two brothers with isolated cerebellar atrophy: one missense variant (p.R537W) results in a protein which does not localize to NPCs and cannot functionally replace the wild type protein, whereas the variant (p.F699L) apparently supports NPC assembly. In addition to its recently described pathological role in steroid-resistant nephrotic syndrome, our work identifies NUP93 as a candidate gene for non-progressive congenital ataxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 05 March 2019

    The original version of this article unfortunately contained mistake in Fig. 3 image.

References

  1. Steinlin M. Nonprogressive congenital ataxias. Brain Dev. 1998;4:199–208.

    Article  Google Scholar 

  2. Bertini E, Zanni G, Boltshauser E. Nonprogressive congenital ataxias. Handb Clin Neurol. 2018;155:91–103.

    Article  PubMed  Google Scholar 

  3. Zanni G, Bertini E. X-linked ataxias. Handb Clin Neurol. 2018;155:175–89.

    Article  PubMed  Google Scholar 

  4. Wente SR, Rout MP. The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol. 2010;2:a000562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beck M, Hurt E. The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol. 2017;18:73–89.

    Article  CAS  PubMed  Google Scholar 

  6. Hezwani M, Fahrenkrog B. The functional versatility of the nuclear pore complex proteins. Semin Cell Dev Biol. 2017;68:2–9.

    Article  CAS  PubMed  Google Scholar 

  7. Vollmer B, Antonin W. The diverse roles of the Nup93/Nic96 complex proteins—structural scaffolds of the nuclear pore complex with additional cellular functions. Biol Chem. 2014;395:515–28.

    Article  CAS  PubMed  Google Scholar 

  8. Sachdev R, Sieverding C, Flotenmeyer M, Antonin W. The C-terminal domain of Nup93 is essential for assembly of the structural backbone of nuclear pore complexes. Mol Biol Cell. 2012;23:740–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chug H, Trakhanov S, Hulsmann BB, Pleiner T, Gorlich D. Crystal structure of the metazoan Nup62*Nup58*Nup54 nucleoporin complex. Science. 2015;350:106–10.

    Article  CAS  PubMed  Google Scholar 

  10. von Appen A, Kosinski J, Sparks L, Ori A, Di Guilio AL, Vollmer B, et al. In situ structural analysis of the human nuclear pore complex. Nature. 2015;526:140–3.

    Article  CAS  Google Scholar 

  11. Vollmer B, Schooley A, Sachdev R, Eisenhardt N, Schneider AM, Sieverding C, et al. Dimerization and direct membrane interaction of Nup53 contribute to nuclear pore complex assembly. EMBO J. 2012;31:4072–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mansfeld J, Guttinger S, Hawryluk-Gara LA, Pante N, Mall M, Galy V, et al. The conserved transmembrane nucleoporin NDC1 is required for nuclear pore complex assembly in vertebrate cells. Mol Cell. 2006;22:93–103.

    Article  CAS  PubMed  Google Scholar 

  13. De Magistris P, Tatarek-Nossol M, Dewor M, Antonin W. A self-inhibitory interaction within Nup155 and membrane binding are required for nuclear pore complex formation. J Cell Sci. 2018;131(1). https://doi.org/10.1242/jcs.208538.

  14. Mitchell JM, Mansfeld J, Capitanio J, Kutay U, Wozniak RW. Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane. J Cell Biol. 2010;191:505–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Braun DA, Sadowski CE, Kohl S, Lovric S, Astrinidis SA, Pabst WL, et al. Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet. 2016;48:457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Braun DA, Lovric S, Schapiro D, Schneider R, Marquez J, Asif M, et al. Mutations in multiple components of the nuclear pore complex cause nephrotic syndrome. J Clin Invest. 2018;128(10):4313–28. https://doi.org/10.1172/JCI98688.

  17. Miyake N, Tsukaguchi H, Koshimizu E, Shono A, Matsunaga S, Shiina M, et al. Biallelic mutations in nuclear pore complex subunit NUP107 cause early-childhood-onset steroid-resistant nephrotic syndrome. Am J Hum Genet. 2015;97:555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Park E, Ahn YH, Kang HG, Miyake N, Tsukaguchi H, Cheong HI. NUP107 mutations in children with steroid-resistant nephrotic syndrome. Nephrol Dial Transplant. 2017;32:1013–7.

    CAS  PubMed  Google Scholar 

  19. Rosti RO, Sotak BN, Bielas SL, Bhat G, Silhavy JL, Aslanger AD, et al. Homozygous mutation in NUP107 leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome. J Med Genet. 2017;54:399–403.

    Article  CAS  PubMed  Google Scholar 

  20. Fujita A, Tsukaguchi H, Koshimizu E, Nakazato H, Itoh K, Kuraoka S, et al. Homozygous splicing mutation in NUP133 causes Galloway-Mowat syndrome. Ann Neurol. 2018;84:814–28. https://doi.org/10.1002/ana.25370.

    Article  CAS  PubMed  Google Scholar 

  21. Basel-Vanagaite L, Muncher L, Straussberg R, Pasmanik-Chor M, Yahav M, Rainshtein L, et al. Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol. 2006;60:214–22.

    Article  CAS  PubMed  Google Scholar 

  22. Tullio-Pelet A, Salomon R, Hadj-Rabia S, Mugnier C, de Laet MH, Chaouachi B, et al. Mutant WD-repeat protein in triple-a syndrome. Nat Genet. 2000;26:332–5.

    Article  CAS  PubMed  Google Scholar 

  23. Kortüm F, Caputo V, Bauer CK, Stella L, Ciolfi A, Alawi M, et al. Mutations in KCNH1 and ATP6V1B2 cause Zimmermann-Laband syndrome. Nat Genet. 2015;47:661–7.

    Article  CAS  PubMed  Google Scholar 

  24. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;9:1297–303.

    Article  CAS  Google Scholar 

  25. Sferra A, Baillat G, Rizza T, Barresi S, Flex E, Tasca G, et al. TBCE mutations cause early-onset progressive encephalopathy with distal spinal muscular atrophy. Am J Hum Genet. 2016;99:974–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu X, Jian X, Boerwinkle E. dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations. Hum Mutat. 2013;34:E2393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24:2125–37.

    Article  CAS  PubMed  Google Scholar 

  31. Eisenhardt N, Schooley A, Antonin W. Xenopus in vitro assays to analyze the function of transmembrane nucleoporins and targeting of inner nuclear membrane proteins. Methods Cell Biol. 2014;122:193–218.

    Article  CAS  PubMed  Google Scholar 

  32. Theerthagiri G, Eisenhardt N, Schwarz H, Antonin W. The nucleoporin Nup188 controls passage of membrane proteins across the nuclear pore complex. J Cell Biol. 2010;189:1129–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morlan J, Baker J, Sinicropi D. Mutation detection by real-time PCR: a simple, robust and highly selective method. PLoS One. 2009;4:e4584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kosinski J, Mosalaganti S, von Appen A, Teimer R, Di Guilio AL, Wan W, et al. Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science. 2016;352:363–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagata K, Randall A, Baldi P. SIDEpro: a novel machine learning approach for the fast and accurate prediction of side-chain conformations. Proteins. 2012;80:142–53.

    Article  CAS  PubMed  Google Scholar 

  36. Gant TM, Wilson KL. Nuclear assembly. Annu Rev Cell Dev Biol. 1997;13:669–95.

    Article  CAS  PubMed  Google Scholar 

  37. Grandi P, Dang T, Pane N, Shevchenko A, Mann M, Forbes D, et al. Nup93, a vertebrate homologue of yeast Nic96p, forms a complex with a novel 205-kDa protein and is required for correct nuclear pore assembly. Mol Biol Cell. 1997;8:2017–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Laurell E, Beck K, Krupina K, Theerthagiri G, Bodenmiller B, Horvath P, et al. Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell. 2011;144:539–50.

    Article  CAS  PubMed  Google Scholar 

  39. Linder MI, Kohler M, Boersema P, Weberruss M, Wandke C, Marino J, et al. Mitotic disassembly of nuclear pore complexes involves CDK1- and PLK1-mediated phosphorylation of key interconnecting nucleoporins. Dev Cell. 2017;43:141–156.e147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nofrini V, Di Giacomo D, Mecucci C. Nucleoporin genes in human diseases. Eur J Hum Genet. 2016;24:1388–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neumann N, Lundin D, Poole AM. Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor. PLoS One. 2010;5:e13241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stuwe T, Bley CJ, Thierbach K, Petrovic S, Schilbach S, Mayo DJ, et al. Architecture of the fungal nuclear pore inner ring complex. Science. 2015;350:56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koehler K, Brockmann K, Krumbholz M, Kind B, Bönnemann C, Gärtner J, et al. Axonal neuropathy with unusual pattern of amyotrophy and alacrima associated with a novel AAAS mutation p.Leu430Phe. Eur J Hum Genet. 2008;16:1499–506.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and their family for their participation in this study.

Funding

This work was supported by grants from the Italian Ministry of Health (Ricerca Finalizzata NET-2013-02356160 to E.B), Fondazione Bambino Gesù (Vite Coraggiose to M.T), and the German Research Foundation to W.A (AN377/7-1).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the project: GZ and WA. Performed the experiments: PDM, MN, EB, SB, AS, AC, MM, HL, and DMA. Analyzed the data: GZ, WA, EB, and MT. Contributed to the writing of the manuscript: GZ and WA. All authors approved the final version of this manuscript.

Corresponding authors

Correspondence to Ginevra Zanni or Wolfram Antonin.

Ethics declarations

All studies were performed in accordance with the Declaration of Helsinki. Written informed consent was obtained from all participating subjects.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The western blot presented in Figure b shows white lines has been corrected. Also the ESM3 was replaced.

Electronic supplementary material

Fig. S1

(PDF 3270 kb)

Fig. S2

(PDF 36 kb)

Fig. S3

(PDF 218 kb)

ESM 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanni, G., De Magistris, P., Nardella, M. et al. Biallelic Variants in the Nuclear Pore Complex Protein NUP93 Are Associated with Non-progressive Congenital Ataxia. Cerebellum 18, 422–432 (2019). https://doi.org/10.1007/s12311-019-1010-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-1010-5

Keywords

Navigation